# NTNU Kunnskap for en bedre verden What can we learn from others? Introducing GL 070

Oil and gas industry



PiperAlpha 1988

Professor Mary Ann Lundteigen | institutt for teknisk kybernetikk E-mail: Mary.a.lundteigen@ntnu.no



#### **Topics covered**

- Overview of GL 070 (Norwegian Oil and Gas)
- Meaning of SIL safety integrity level
- Meaning of Minimum SIL requirements
  - How they are established
  - How they are used
- Thoughts on the relevance for autonomous waterbuses



### **Background: Guideline NOROG 070**

- Developed as joint industry project
- Aim: Simplify the adaption key standards on design and operation of electronic and programmable safety systems.
  - Agree on best practices for the standards' requirements on:
    - Planning and life cycle activities
    - Risk-based analyses
    - Documentation
    - Follow-up in operational phase
    - Interpretation of independence
- Preserve well established safety design philosophies with minimum SIL requirements ("equivalence principle")
- Referenced by Petroleum Safety Authority



(Recommended SIL requirements)

•



070 – NORWEGIAN OIL AND GAS APPLICATION OF IEC 61508 AND IEC 61511

IN THE NORWEGIAN PETROLEUM INDUSTRY

1. Edition 2001

- 2. Edition 2004
- 3. Edition 2016
- 4. Edition 2020

## What is safety integrity level (SIL)?

- Safety performance measure for safety functions that rely on sensors, controllers, actuators,...
- Introduced in IEC 61508
- Four levels (SIL 1 to SIL 4)

SIL has two implications:

٠

- Defines range for failure measures (makes the link to risk acceptance)
- Defines rules that frame design and operation/maintenance
  - Work processes
  - Competences and roles
  - Safe design principles
  - Software program development
  - Data collection and analysis

| SIL | PFD - failure |  |  |
|-----|---------------|--|--|
|     | probability   |  |  |
| 4   | ≤ 0.01%       |  |  |
| 3   | ≤ 0.1%        |  |  |
| 2   | ≤ 1%          |  |  |
| 1   | ≤ 10%         |  |  |

SIL table in IEC 61508



### Minimum SIL requirements

- Benchmark concept coined by GL 070
- Predefined SIL requirements (1-4) for typical/ commonly used safety functions ("achieving functional goals")
- Why?
  - A wish to preserve good engineering practice despite the use of risk-based approaches ("standardize where possible")
  - Avoid that risk-based approaches are used to justify lower safety levels than in the past



#### Focus of next slides

1. Explain how minimum SIL requirements have been developed

("As benchmarks in GL 070")

2. Explain how minimum SIL requirements are *used* 

(«When designing a new system»)



#### **Developing** minimum SIL requirements



#### Steps leading up to requirements in GL 070



### Minimum SIL requirements

| able 7 <mark>5.1 Mi</mark> nimu                                                                                        | m SIL / PFD                    | ) requirements - Local SIFs                                                                                                                                                                                                                                                                                   |         |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| SIF                                                                                                                    | SIL/PFD                        | Functional boundaries / comments / notes                                                                                                                                                                                                                                                                      | Section |  |
| Protection on<br>through PSD<br>Closure of several<br>valves                                                           | SIL 1<br>PFD < 0.04<br>Note 1) | The function starts where the signal is generated (not including transmitter or ESD system) and ends with the closing of all necessary valves.                                                                                                                                                                |         |  |
| PSD functions:<br>PAHH                                                                                                 | SIL 1                          | The functions start with the detection of high/low pressure or level, and ends with closing of the valve.                                                                                                                                                                                                     |         |  |
| LAHH<br>LALL                                                                                                           | PFD < 0.02                     | equipment independent of number of valves/lines. However, in                                                                                                                                                                                                                                                  | A.3.2   |  |
| Closure of critical<br>valve(s)                                                                                        | Note 1)                        | situations with several inlets, other additional measures might<br>be necessary to meet hazard rate acceptance criteria. Then a<br>risk-based approach taking into account the relevant protection<br>functions and independence of these should be considered, ref.<br>Appendix B.                           |         |  |
| PSD/ESD function:<br>LAHH in flare KO drum<br>Detection and transfer of<br>shutdown signal through<br>both PSD and ESD | SIL 3                          | The function starts with the detection of high level, and ends<br>with the signal from the PSD/ESD logic, i.e. the final elements<br>are not included (since a generic definition of this function has<br>been impossible to give).                                                                           | A.3.3   |  |
| PSD function:<br>TAHH/TALL                                                                                             | SIL 1<br>PFD < 0.02            | The function starts with (and includes) the temperature sensor<br>and terminates with closing of the critical valve.<br>Note: The final element could be different from a valve, e.g. a                                                                                                                       | A.3.4   |  |
| Closure of final element                                                                                               | Note 1)                        | pump that shall be stopped.                                                                                                                                                                                                                                                                                   |         |  |
| PSD function:<br>PALL<br>Primary protection<br>against leakage                                                         | NA                             | No particular SIL requirement is given for leak detection<br>through the PSD system due to the assumed low reliability of<br>detecting low pressure. This requires that adequate automatic<br>gas detection is provided to cover the leakage.<br>For under-pressure protection the SIL requirements should be | A.3.5   |  |
| ote 1): Components qualified                                                                                           | l to be used in S              | individually addressed.<br>IL 2 application ("SIL 2 compatible")                                                                                                                                                                                                                                              |         |  |

|           | SIF                                         | SIF SIL Functional boundaries / comments |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |       |
|-----------|---------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|
| l<br>Clo  | ESD sectioning<br>osure of one ESD<br>valve | SIL 1<br>PFD <<br>0.015<br>Note 1)       | The function starts at the unit giving the demand (unit not<br>included), and ends within the process with the valve. The<br>following equipment is needed:<br>• ESD logic incl. I/O<br>• ESD valve including solenoid(s) and actuator                                                                                                                                                                                                  |                                     | A.4   |
| D         | Pepressurisation<br>(blowdown)              | SIL 1<br>PFD <                           | The function starts at the unit giving the demand (unit<br>included) and ends with the inventory having free acc<br>the blowdown valve. The following equipment is nee<br>• ESD logic incl. I/O<br>• ESD valve including solenoid(s) and actuato                                                                                                                                                                                        | t not<br>cess through<br>ded:<br>or | A.5   |
| (<br>b    | Fire detection with one detector            | SIL 2                                    | processes alarm signal and action signals are transmitted. The<br>following equipment is needed:<br>• Fire detector (heat, flame or smoke)<br>• F&G logic incl. I/O                                                                                                                                                                                                                                                                     | A.8.1                               |       |
|           | Gas detection with one detector             | SIL 2                                    | Given exposure of one detector, the function generates and<br>processes alarm signal and action signals are transmitted. The<br>following equipment is needed:<br>Gas detector (catalytic, IR point, IR line, H <sub>2</sub> S)<br>• F&G logic incl. I/O                                                                                                                                                                                | A.8.2                               |       |
| Shu<br>sy | Gas detection with<br>aspirator             | SIL 2                                    | Given low values of gas to the detector, the function generates<br>and processes alarm signal and action signals are transmitted.<br>The following equipment is needed:<br>• Flow transmitter (FALL)<br>• Gas detector (catalytic, IR point, H <sub>2</sub> S)<br>• F&G logic incl. I/O<br>Note that the fan, which provides continuous air flow, and the<br>selector valve, which samples gas from defined spots, are not<br>included. | A.8.3                               | A.6.1 |
| pro       | Start of fire pumps upon<br>pressure change | SIL 2                                    | Given low pressure in ring main or high pressure downstream<br>deluge vale, the function generates and processes alarm signal<br>and action signals are transmitted such that the firewater pumps<br>start. The following equipment is needed:<br>• Pressure transmitter<br>• F&G logic incl. I/O                                                                                                                                       | A.8.4                               |       |



#### Example

Safety function: Isolation of subsea well



Estimation of historical safety level



#### SIL 3 level required for closure of specific critical valves





| ° |                                                                                                     |  |
|---|-----------------------------------------------------------------------------------------------------|--|
|   | HPU HP SOVs DHSV                                                                                    |  |
| 2 | RBD for the SIF "Primary and secondary barrier isolation of production/injection bore in one subsea |  |

|                                                |        | DED ava                  | PI                     | FD                     |                        |
|------------------------------------------------|--------|--------------------------|------------------------|------------------------|------------------------|
| Component                                      | Voting | component                | CCF                    | Indep.                 | Total<br>contribution  |
| ESD logic (redundant I/O<br>and redundant CPU) | 1001   | $1.9\cdot10^{\text{-4}}$ | -                      | $1.9\cdot 10^{-4}$     | $1.9\cdot 10^{-4}$     |
| Upper branch:                                  |        |                          |                        |                        |                        |
| HPU LP Solenoids                               | 2002   | $2.6 \cdot 10^{-3}$      | -                      | $5.2 \cdot 10^{-3}$    |                        |
| Relays                                         | 2002   | $8.8 \cdot 10^{-4}$      | -                      | $1.8 \cdot 10^{-3}$    | 1                      |
| Dump DCV                                       | 1001   | 7.0 · 10 <sup>-4</sup>   |                        | 7.0 · 10 <sup>-4</sup> | 1                      |
| PMV                                            | 1001   | 7.9 · 10 <sup>-4</sup>   | 7.9 · 10 <sup>.5</sup> | 7.9 · 10 <sup>-4</sup> | 1                      |
| PWV                                            | 1001   | 7.9 · 10 <sup>-4</sup>   |                        | $7.9 \cdot 10^{-4}$    | $1.6 \cdot 10^{-6}$    |
| XOV                                            | 1001   | 7.9 · 10 <sup>-4</sup>   |                        | $7.9 \cdot 10^{-4}$    | 1                      |
| Lower branch:                                  |        |                          |                        |                        | 1                      |
| HPU HP Solenoids                               | 2002   | $2.6 \cdot 10^{-3}$      | -                      | $5.2 \cdot 10^{-3}$    | 1                      |
| DHSV                                           | 1001   | $7.0 \cdot 10^{-3}$      | -                      | $7.0 \cdot 10^{-3}$    | 1                      |
| CCF HPU solenoids                              | 1004   | $2.6 \cdot 10^{-3}$      | 7.8 · 10 <sup>-5</sup> | -                      | 7.8 · 10 <sup>-5</sup> |
| Total for function                             |        |                          |                        |                        | 2.7 . 10-4             |

| Table 7.5.3                                                                                                                         | Minimum                  | 1 SIL requirements – Subsea SIFs                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| SIF                                                                                                                                 | SIL                      | Functional boundaries / comments                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section |
| Primary and second<br>barrier isolation of<br>production/njectia<br>bore in one subsea w<br>from the productio<br>manifold/flowline | lary<br>on<br>well SIL 3 | Primary and secondary barrier isolation of production/injection<br>bore in one subsets well from the production manifold/flowline. The<br>following equipment is needed:       • ESD nodes incl. I/O     •       • All necessary components* to close the actuated valves<br>needed to isolate flow from the reservoir to the production<br>flowline and umblical via the production bore, typically:     •       • DHSV     •     OR PMV     •     OR (PWV AND XOV) | A.13.1  |
|                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |





### What if...



1. Replacing electro-hydraulic valves with all-electric & battery assisted fail-safe closure **Existing** minimum SIL requirement **applies**. It must be demonstrated that the new realization still meets the minimum SIL requirement

2. A situation awareness system is replacing operator A new minimum SIL requirement is needed. New potential risks? Human-machine interfaces for remote monitoring? For the technical part: Should the new system be at least as reliable as operator under best scenario («trained» and "low complex situations") (e.g. < 0.01)



#### **Relevance to autonomous waterbuses?**

• Benefit from developing a common recommended practice?

Some thoughts:

- A standardization opportunity (cost-efficient, consistent safety target)
  - Possible to establish a conceptual (Semi) autonomous waterbus system as basis? (Common assumptions)
  - Name typical safety functions?
- Benefit from establishing a set of well communicated safety functions and performance criteria to achieve public acceptance?





#### Performance level?





# DINTINU | Kunnskap for en bedre verden

#### **Comments? Questions?**

#### GL 070 is found here:

https://norskoljeoggass.no/en/working-conditions/retningslinjer/healthworking-environment-safety/technical-safety/070-guidelines/

Professor Mary Ann Lundteigen | institutt for teknisk kybernetikk E-mail: <u>Mary.a.lundteigen@ntnu.no</u> & <u>https://www.ntnu.edu/sfi-autoship</u>

