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Introduction

Learning Objectives

The main learning objectives associated with these slides are to:
I Introduce Markov methods for system reliability analysis
I Explain di�erent ways to solve Markov equations, including:

• Time dependent
• Steady state
• Mean time to first failure (MTTFS)

The slides include topics from Chapter 5in Reliability of Safety-Critical
Systems: Theory and Applications. DOI:10.1002/9781118776353.
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Markov Basics

Markov Approach in Brief

Some keywords:
I Suitable for dynamic systems
I Must satisfy the Markov properties
I Can model system states, beyond

failure states
I Can be used to model steady state and

time-dependent probabilities
I Can also be used to model mean time

to first failure (MTTFS)

Figure: Russian
mathematician Andrei
Markov (1856-1922)
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Markov Basics

States and State Transitions

Consider a parallel structure of two components.
Each component is assumed to have two states, a
functioning state and a failed state. The structure has
therefore 22 = 4 possible states, and the state space is
X = {0, 1, 2, 3}

State Component 1 Component 2
0 Functioning Functioning
1 Functioning Failed
2 Failed Functioning
3 Failed Failed

0

1

2

3
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Markov Basics

State Space

Let X (t) denote the state of the system at time t.

The state space is the set of all the possible system states. In this book we
number the states by integers from 0 to r . The state space is therefore

X = {0, 1, 2, . . . , r}

Let Pi (t) = Pr(X (t) = i) be the probability that the system is in state i at
time t.

The state probability distribution is denoted

P(t) = (P0 (t), P1 (t), . . . , Pr (t))
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Markov Basics

Markov Property
Assume that the process is in state i at time s, that is, X (s) = i. The
conditional probability that the process will be in state j at time t + s is

Pr(X (s + t) = j | X (s) = i,X (u) = x (u), 0 ≤ u < s)

where {x (u), 0 ≤ u < s} denotes the “history” of the process up to, but not
including, time s

The process is said to have the Markov property if

Pr(X (s + t) = j | X (t) = i,X (u) = x (u), 0 ≤ u < s)

= Pr(X (s + t) = j | X (s) = i)

for all possible x (u), 0 ≤ u < s
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Markov Basics

Markov Property

So, what is Markov property (in easy words)
I The probability of being in a specific state state at a future time t only

depends ONLY on the state of the system right now (s) state, and NOT
at all about the states the system has had before (before s).

I A “memorylessness” process, where the next state of the process
depends only on the previous state and not the sequence of states.

I Your next move is purely random: Every time you are in a state, you
flip a coin or a dice to decide where to go next.
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Markov Basics

Markov Process

A ‘continuous time’ stochastic process that fulfills the Markov property is
called a Markov process.

We will further assume that the Markov process for all i, j in X fulfills

Pr(X (s + t) = j | X (s) = i) = Pr(X (t) = j | X (0) = i)

for all s, t ≥ 0

which says that the probability of a transition from state i to state j does
not depend on the global time and only depends on the time interval
available for the transition.

A process with this property is known as a process with stationary transition
probabilities, or as a time-homogeneous process.
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Markov Basics

Transition Probabilities

The transition probabilities of the Markov process

Pij (t) = Pr(X (t) = j | X (0) = i)

may be arranged as a matrix

P(t) =
*.....
,

P00 (t) P01 (t) · · · P0r (t)
P10 (t) P11 (t) · · · P1r (t)
...

...
. . .

...

Pr0 (t) Pr1 (t) · · · Prr (t)

+/////
-

When a process is in state i at time 0, it must either be in state i at time t or
have made a transition to a di�erent state. We must therefore have

r∑
j=0

Pij (t) = 1

Lundteigen& Rausand Chapter 5.Markov Methods (Version 0.1) 10 / 45



Markov Basics

Trajectory

0

1

2

3

4

5

6

Time

State

S1 S2 S3 S4 S5 

Let 0 = S0 ≤ S1 ≤ S2 ≤ · · · be the times at which transitions occur, and let
Ti = Si+1 − Si be the ith interoccurrence time, or sojourn time, for i = 1, 2, . . ..

A possible trajectory of a Markov process is illustrated above.

We define Si such that transition i takes place immediately before Si, in
which case the trajectory of the process is continuous from the right.
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Markov Basics

Time in a State
A Markov process enters state i at time 0, such that X (0) = i. Let T̃i be the
sojourn time in state i. [Note that Ti denotes the ith interoccurrence time,
while T̃i is the time spent during a visit to state i.]

We want to find Pr(T̃i > t). We observe that the process is still in state i at
time s, that is, T̃i > s, and are interested in finding the probability that it
will remain in state i for t time units more. We hence want to find
Pr(T̃i > t + s | T̃i > s).

Since the process has the Markov property, the probability for the process
to stay for t more time units is determined only by the current state i. The
fact that the process has been staying there for s time units is therefore
irrelevant. Thus

Pr(T̃i > t + s | T̃i > s) = Pr(T̃i > t) for s, t ≥ 0

Hence T̃i is memoryless and must be exponentially distributed.
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Markov Basics

Sojourn Times

From the previous frame we can conclude that the sojourn times T1, T2, . . .
are independent and exponentially distributed. The independence follows
from the Markov property.
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Markov Basics

Constructing the Markov Process

We may construct a Markov process as a stochastic process having the
properties that each time it enters a state i:

1. The amount of time T̃i the process spends in state i before making a
transition into a di�erent state is exponentially distributed with rate,
say αi.

2. When the process leaves state i, it will next enter state j with some
probability Pij , where

∑r
j=0
j,i

Pij = 1.

The mean sojourn time in state i is therefore

E(T̃i) =
1
αi
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Markov Basics

Transition Rates

Let aij be defined by

aij = αi · Pij for all i , j

Since αi is the rate at which the process leaves state i and Pij is the
probability that it goes to state j, it follows that aij is the rate when in state i
that the process makes a transition into state j. We call aij the transition rate
from i to j.
Since

∑
j,i Pij = 1, it that

αi =
r∑
j=0
j,i

aij
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Markov Basics

Transition Rates (2)

Let Tij be the time the process spends in state i before entering into state
j(, i). The time Tij is exponentially distributed with rate aij .

Consider a short time interval ∆t. Since Tij and T̃i are exponentially
distributed, we have that

Pii (∆t) = Pr(T̃i > ∆t) = e−αi∆t ≈ 1 − αi∆t
Pij (∆t) = Pr(Tij ≤ ∆t) = 1 − e−aij∆t ≈ aij∆t

when ∆t is “small”. We therefore have that

lim
∆t→0

1 − Pii (∆t)
∆t

= lim
∆t→0

Pr(T̃i < ∆t)
∆t

= αi

lim
∆t→0

Pij (∆t)
∆t

= lim
∆t→0

Pr(Tij < ∆t)
∆t

= aij for i , j
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Markov Basics

Transition Rate Matrix
We can deduce αi and Pij when we know aij for all i, j, and may therefore
define the Markov process by specifying (i) the state space X and (ii) the
transition rates aij for all i , j in X. The second definition is o�en more
natural and will be our main approach in the following.
We may arrange the transition rates aij as a matrix:

A =

*.....
,

a00 a01 · · · a0r
a10 a11 · · · a1r
...

...
. . .

...

ar0 ar1 · · · arr

+/////
-

where the diagonal elements are

aii = −αi = −
r∑
j=0
j,i

aij
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Markov Basics

Departure Rates

Observe that the entries of row i of the transition rate matrix A are the
transition rates out of state i (for j , i). We will call them departure rates
from state i.

The rate −aii = αi is the total departure rate from state i. Note that:
I αi is also the rate of staying in state i
I aij is the rate of leaving from state i to state j

The sum of the entries in row i is always equal to 0, for all i ∈ X.
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Markov Basics

Kolmogorov Di�erential Equations

To find Pij (t) we start by considering the Chapman-Kolmogorov equations

Pij (t + ∆t) =
r∑

k=0
Pik (t)Pkj (∆t)

We consider

Pij (t + ∆t) − Pij (t) =
r∑

k=0
k,j

Pik (t)Pkj (∆t) − [1 − Pjj (∆t)]Pij (t)

By dividing by ∆t and then taking the limit as ∆t → 0, we obtain

lim
∆t→0

Pij (t + ∆t) − Pij (t)
∆t

= lim
∆t→0



r∑
k=0
k,j

Pik (t)
Pkj (∆t)

∆t
−
1 − Pjj (∆t)

∆t
Pij (t)


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Markov Basics

Kolmogorov Di�erential Equations (2)

Since the summing index is finite, we may interchange the limit and
summation and obtain

Ṗij (t) =
r∑

k=0
k,j

akjPik (t) − αjPij (t) =
r∑

k=0
akjPik (t)

where, as before, ajj = −αj . The di�erential equations above are known as
the Kolmogorov forward equations.

If the marked t and ∆t are interchanged, you can develop the Kolmogorov
backward equations.
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Markov Basics

Kolmogorov Di�erential Equations (3)

The Kolmogorov forward equations may be wri�en in matrix format as:

P(t) · A = Ṗ(t)

which we can also write as

Ṗ(t) = P(t) · A

In the following, we will use the Kolmogorov forward equation, but in
principle we could could choose either one.
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Solving the Markov Process

What to Solve for

There are three main ways we will solve the Markov equations:

1. For calculating the time dependent probabilities

2. For calculating the steady state probabilities

3. For calculating the mean time to first failure (MTTFS)

In the following, we will present them all.
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Time Dependent Solution

Steps

The main benefit of time-dependent probabilities is that we can study how
the probabilities (e.g., availability and unavailability) change with time.

To find the time-dependent probabilities for a specific transition model, we
have to:

1. Set up the transition matrix

2. Set up the di�erential equations

3. Solve these equations, either by hand or using tools like e.g., MAPLE.
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Time Dependent Solution

Example

Consider a single system item in continous use and which is repaired if it
fails. The system states are:

State State description

0 The item is functioning
1 The item has failed

The corresponding state diagram is:

λ

μ
0

OK

1

Failed

Lundteigen& Rausand Chapter 5.Markov Methods (Version 0.1) 24 / 45



Time Dependent Solution

Example (cont.)

I Step 1:
Se�ing up the transition matrix is

At =

(
−λ+ λ
µ −µ

)
I Step 2:

Se�ing up the di�erential equations:

−λP0 (t) + µP1 (t) = Ṗ0 (t)

λP0 (t) − µP1 (t) = Ṗ1 (t)
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Time Dependent Solution

Example (cont.)

I Step 3:
Solving for P0 (t) and P1 (t).

You may use dsolve-function in MAPLE to solve with the initial
conditions that P0 (0) = 1 and P1 (0) = 0 and find that:

P0 (t) =
µ

µ + λ
+

µ

µ + λ
e−(λ+µ )t

P0 (t) =
λ

µ + λ
+

λ

µ + λ
e−(λ+µ )t
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Time Dependent Solution

Example (cont.)

The following plots survivability and availability, using λ = 1 and µ = 10.

Time t
0,0 0,5 1,0 1,5 2,0 2,5 3,0

P
0
(t

)

0,0

0,2

0,4

0,6

0,8

1,0 Availability

Survivor function
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Steady-State Solution

Steps

The Markov models o�en enter a steady-state a�er few hours, typically 2-3
times the mean repair time. In this case, it may be of more interest to study
steady-state probabilities rather than time-dependent.

To find the steady-state probabilities for a specific transition model, we
have to:

1. Set up the transition matrix (as we did for time dependent solution)

2. Set up the steady state equations

3. Solve these equations, either by hand or using tools like e.g., MAPLE,
bearing in mind that

∑
Pi = 1.
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Steady-State Solution

Example: Single System

Consider a single system that may fail due to DU or DD failures. The
system states are:

State State description

0 The channel is functioning (no DU or DD failures)
1 The channel has a DD fault
2 The channel has a DU fault

μDUμDD

λDUλDD

0

OK

2

DU

1

DD
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Steady-State Solution

Example: Single System (cont.)

Step 1:
Set up transition matrix:

A =
*..
,

−(λDD + λDU ) λDD λDU
µDU −µDU 0
µDU 0 −µDU

+//
-

Parameter Description Comments

λDU Dangerous undetected (DU) failure rate

λDD Dangerous undetected (DD) failure rate

µDU Repair rate of DU failures 1/( τ
n−k+2 +MRT )

µDD Repair rate of DD failures 1/MTTR
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Steady-State Solution

Example: Single System (cont.)

Step 2:
Set up the steady-state equations, i.e. PA = 0
I Select r − 1 (in this case two) of the r (in this case three) equations,

preferably the ones with most zeros, and add the equation
P0 + P1 + P2 = 1.

The equations becoome

P0 + P1 + P2 = 1
λDDP0 − µDDP1 = 0
λDUP0 − µDUP2 = 0
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Steady-State Solution

Example: Single System (cont.)

Step 3:
Solve for the steady state probabilities, in this case P0, P1, and P2:
I By hand-calculations or e.g. MAPLE, we find that:

P0 =
1

λDD
µDD
+

λDU
µDU
+ 1

P1 =
λDD
µDD

P0

P2 =
λDU
µDU

P0
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Steady-State Solution

Example: 2oo3 system

Consider a subsystem of three identical and independent channels with
failure rate λ voted 2oo3. Since the channels are identical, it su�ices to
define four states.

State State description

0 Three channels are functioning
1 Two channels are functioning and one is failed
2 One channel is functioning and two are failed
3 Three channels are failed

0

3 OK

1

2 OK
1 F

3
3 F

λ3λ

μ2 μ3

μ1 2

1 OK
2 F

2λ
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Steady-State Solution

Example: 2oo3 System(cont.)

The state transition matrix becomes:

A =
*....
,

−3λ 3λ 0 0
µ1 −(µ1 + 2λ) 2λ 0
µ2 0 −(µ2 + λ) λ
µ3 0 0 −µ3

+////
-

The steady-state equations are (replacing one of the most favorable of the
equations by P0 + P1 + P2 + P3 = 1:

[P0, P1, P2, P3]
*....
,

1 3λ 0 0
1 −(µ1 + 2λ) 2λ 0
1 0 −(µ2 + λ) λ
1 0 0 −µ3

+////
-

= [1, 0, 0, 0]
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Steady-State Solution

Example: 2oo3 System (cont.)

Solving for steady-state probabilities using MAPLE gives the following
solutions:

P0 =
µ3 (2λ2 + 2λµ2 + µ1µ2 + λµ1)

6λ3 + 11λ2µ3 + 5λµ2µ3 + µ1µ2µ3 + λµ1µ3
≈ 0.9988

P1 =
3λµ3 (λ + µ2)

6λ3 + 11λ2µ3 + 5λµ2µ3 + µ1µ2µ3 + λµ1µ3
≈ 1.12 · 10−3

P2 =
6µ3λ2

6λ3 + 11λ2µ3 + 5λµ2µ3 + µ1µ2µ3 + λµ1µ3
≈ 1.12 · 10−6

P3 =
6λ3

6λ3 + 11λ2µ3 + 5λµ2µ3 + µ1µ2µ3 + λµ1µ3
≈ 5.99 · 10−10

The numerical results assume parameter values λ = 5.0 · 10−4 per hour (i.e.,
MTTF = 2000 hours) and µ = 10−1 per hour (i.e., MTTR = 10 hours).
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Steady-State Solution

Example: 2oo3 System (cont.)

Now we expand our analysis of the subsystem of three identical channels to
also include common cause failures. We have then two types of failures:
independent failures (with λ(i)) as well as CCFs (with λ(c)). This modification
does not introduce new states, but new and modified transitions.

μ3
μ2

μ1
0

3 OK

1

2 OK
1 F

3
3 F

λ3λ(i)

2

1 OK
2 F

2λ(i)

λ(c)

λ(c)
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Steady-State Solution

Example: 2oo3 System (cont.)

The state transition matrix becomes:

A =
*....
,

−(3λ(i) + λ(c) ) 3λ(i) 0 λ(c)

µ1 −(µ1 + 2λ(i) + λ(c) ) 2λ(i) λ(c)

µ2 0 −(µ2 + λ) λ
µ3 0 0 −µ3

+////
-

By using the same parameter values as case study I, and knowing that
λ(i) = (1 − β )λ and λ(c) = βλ and β = 0.10, we get:

P0 = ≈ 0.9989
P1 = ≈ 1.08 · 10−3

P2 = ≈ 9.70 · 10−7

P3 = ≈ 5.00 · 10−5
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Steady-State Solution

Example: 2oo3 System (cont.)

It may be of interest to determine how o�en (frequent) a state is visited, for
example how o�en it enters a failed state.

With basis in case study II, we find that the visit frequencies are:

ν0 = P0α0 = P0 (3λ(i) + λc) ≈ 1.40 · 10−4 per hour

ν1 = P1α1 = P1 (µ1 + 2λ(i) + λc) ≈ 1.35 · 10−4 per hour

ν2 = P2α2 = P2 (µ2 + λ(i) + λc) ≈ 9.70 · 10−8 per hour
ν3 = P3α3 = P3µ3 ≈ 5.00 · 10−6 per hour
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Steady-State Solution

Example: 2oo3 System (cont.)

A2oo3 system fails when it enters state 2 or state 3. This means that the
frequency of system failures, ωF is:

ω = P12λ(i) + (P0 + P1)λc ≈ 5.10 · 10−5 per hour

which means that the system will fail on the average once every 22.4 years.
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MTTFS

Steps

The main approach to determine MTTF (for first failure) is:

1. Remove transitions from states where the system is in the failed state.
These states now defined as absorbing states

2. Set up the corresponding modified transition matrix (having now the
rows corresponding to absorbing states as just “zeros”).

3. Set up the reduced transition matrix (Ared), where the rows of zeros are
removed, along with the columns that represent the absorbing states

4. Solve for MTTF using either approach 1 or approach 2:
• Approach 1: Se�ing up and solving the di�erential equations
• Approach 2: Se�ing up and solving the Laplace transform of the

di�erential equations
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MTTFS

Step 1-3 for a 2oo3 System

Step 1: Consider again the 2oo3 system with the CCFs included. The original transition matrix was:

A =
*....
,

−(3λ (i) + λ (c) ) 3λ (i) 0 λ (c)

µ1 −(µ1 + 2λ (i) + λ (c) ) 2λ (i) λ (c)

µ2 0 −(µ2 + λ) λ
µ3 0 0 −µ3

+////
-

Step 2: This system fail in state 3 and state 4, and we remove these transitions. The modified transition
matrix becomes then:

Amod =

*....
,

−(3λ (i) + λ (c) ) 3λ (i) 0 λ (c)

µ1 −(µ1 + 2λ (i) + λ (c) ) 2λ (i) λ (c)

0 0 −(µ2 + λ) λ
0 0 0 0

+////
-

Step 3: The reduced transition matrix consist of the modified matrix, but with row no 4 removed
(because of all zero’s) and column 3 and 4 removed (because they are absorbing states). This gives:

Ared =

(
−(3λ (i) + λ (c) ) 3λ (i)

µ1 −(µ1 + 2λ (i) + λ (c) )

)
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MTTFS

Step 4: Approach 1

The approach for solving time-dependent probabilities is as follows:
I Find survival function Rs (t) using the reduced transition matrix, which

is the sum of the state probabilities where the system is in a
functioning state.

I Calculate MTTF using:

MTTF =
∫ ∞

0
R(t) dt

This may be done by hand calculation or by using e.g. MAPLE®or
MATLAB®.
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MTTFS

Step 4: Results

Consider again the subsystem of three identical and independent channels
with failure rate λ voted 2oo3. Since the channels are identical, it su�ices to
define four states.

We define both state 3 and state 4 as absorbing, and remove the transitions
from state 3 to state 0 and from state 2 to state 0. The result is that we can
set up the following simplified matrix:

Ared =

(
−(3λ(i) + λ(c) 3λ(i)

µ1 −(µ1 + 2λ(i) + λ(c)

)
Using data used earlier for this example and solving by e.g. MAPLE, we get
MTTF ≈ 1.962 · 105 hours or ≈ 22.4 years.
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MTTFS

Step 4: Approach 2

The approach for solving Laplace transforms is based on the following assumption:

R(∞) = R∗ (0) =
∫ ∞
0

e−0R(t) dt =
∫ ∞
0

R(t) dt = MTTF

where R*is calculated for the functioning states.

Reconsider again the 2oo3 voted system. The reduced transition matrix only contains
transitions to and from functioning states. The Laplace transform of the reduced state
probabilities becomes:

[
P∗0 (s), P

∗
1 (s)

]
Ared =

[
sP∗0 (s) − P0 (0), sP

∗
1 (s) − P1 (0)

]

Because the voted group is started in state 0, P0 (0) = 1 and P1 (0) = 0, and the equation
becomes

[
P∗0 (s), P

∗
1 (s)

]
Ared =

[
sP∗0 (s) − 1, sP

∗
1 (s)

]

Le�ing s = 0 is the same as le�ing t → ∞:
[
P∗0 (0), P

∗
1 (0)

]
Ared = [−1, 0]
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MTTFS

Step 4: Results

With the reduced transition matrix for the 2oo3 voted system with CCFs included, we can
now solve the equation. This can be done by hand, or by using e.g. MAPLE. Using MAPLE,
we got:

P∗0 (0) =
µ1 + 2λ(i) + λ(c)

6λ(i)2 + 5λ(i)λ(c) + λ(c)µ1 + λ(c)
2

P∗1 (0) =
3λ(i)

6λ(i)2 + 5λ(i)λ(c) + λ(c)µ1 + λ(c)
2

This means that:

MTTF = R∗ (0) = P∗0 (0) + P
∗
1 (0)

=
3λ(i) + µ1 + 2λ(i) + λ(c)

6λ(i)2 + 5λ(i)λ(c) + λ(c)µ1 + λ(c)
2

When using the same data as before:

MTTF ≈ 22.40 years

This is the same result as we got when we solved for the time dependent solution.
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