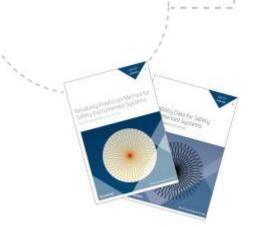


PK 5170: On industrial practices and use of the PDS method

Mary.a.Lundteigen@ntnu.no

(Revision: 27. September 2016)



www.ntnu.no

RAMS

Keywords

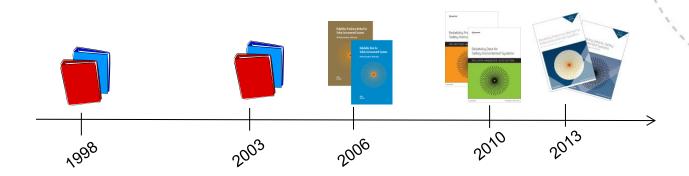
PFD

β **CSU** CF DTU_T Systematic failure C_{MooN} β_2 DTU_R

Random hardware failure

 P_{TIF}

PDS method – brief history



- Initial development by NTNU/SINTEF
- Further improvements and alignment with standards through research projects funded by the Norwegian Research Council and the PDS forum. Headed by SINTEF.
- http://www.sintef.no/pds

PDS forum

PDS method – MAIN objectives

Main objectives:

- Quantify the safety unavailability , AND
- Quantify loss of production

Safety unavailability: The safety function not being able to function on demand

Production stopped due to spurious (false) activations

Production stopped while SIS down for repair _

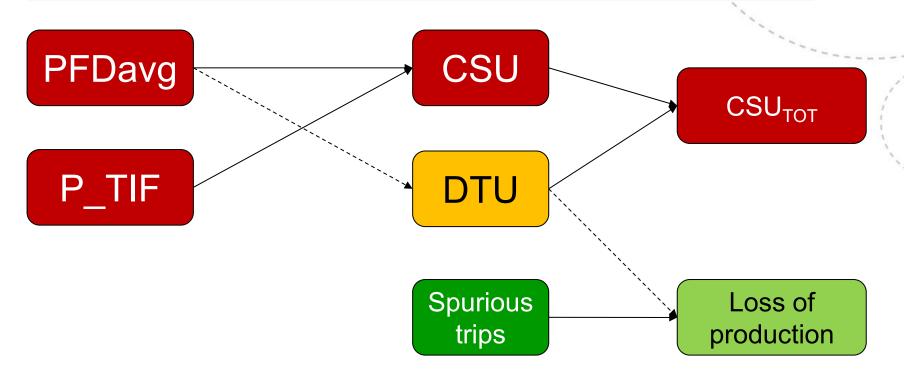
PDS method – other objectives

Other objective: Provide ``realistic" estimates for safety unavailability by:

- Overcoming some weaknesses in the IEC 61508 standard related to:
 - Common cause failures
 - Failure classification
- Presenting data that corresponds to the "best knowledge" in the oil and gas industry

Measure of safety unavailability - CSU

Safety unavailability is called "critical safety unavailability" (CSU)



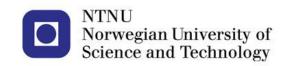
DTU: Downtime unavailablity, P_TIF: Probability of test independent failure

PDS method versus IEC 61508

PDS and IEC 61508 differs (slightly) in their approach to:

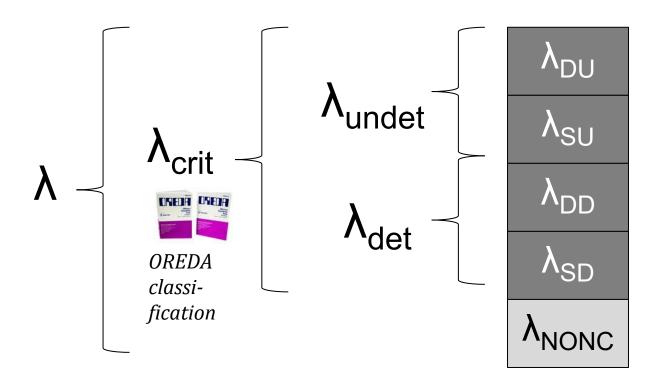
- Failure classification and what failures to include in quantification of PFD/CSU
- Modeling of CCFs
- Approach to incorporation of downtime due to repair
- Treatment of imperfect testing
- Alternative proposals for how to treat special cases (e.g. dependencies between multiple SISs)

FAILURE CLASSIFICATION

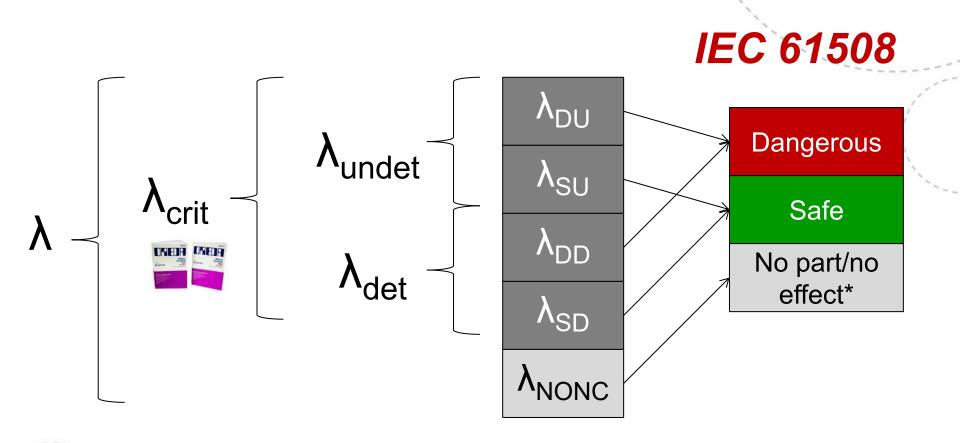


www.ntnu.no NTNU, September 2007

Failure classification - application

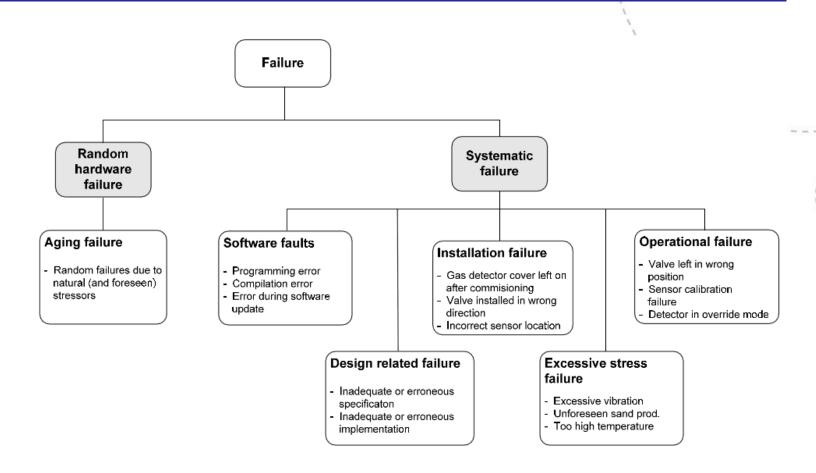


Failure classification - application



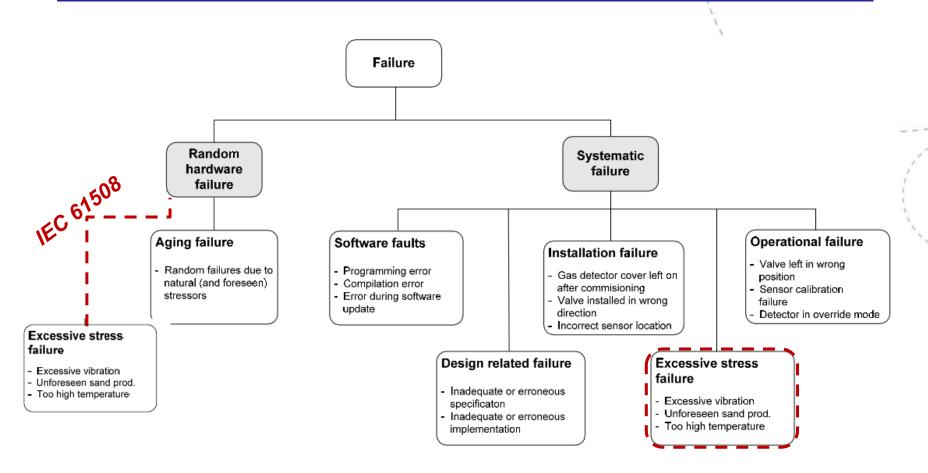
^{*}New failure category in IEC 61508, 2010 edition

Failure classification in PDS



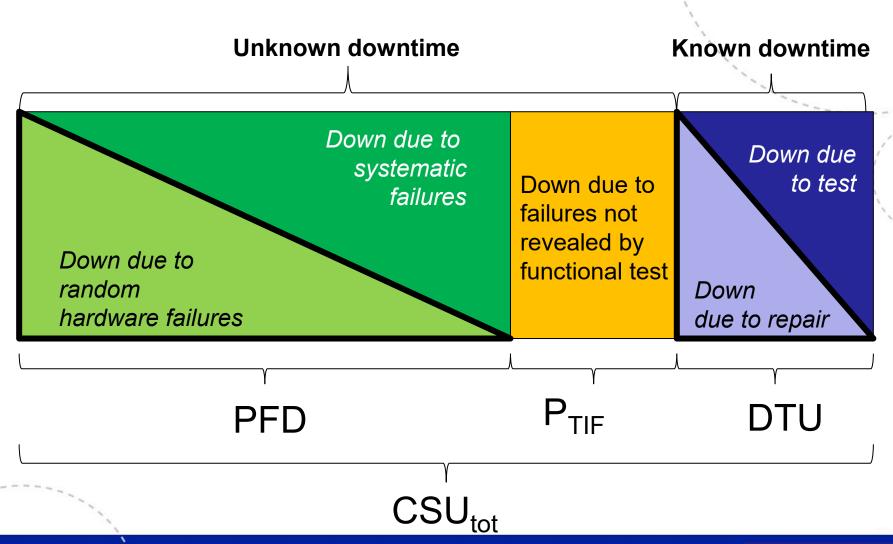
Ref: PDS method (2010)

Failure classification in PDS/ IEC 61508

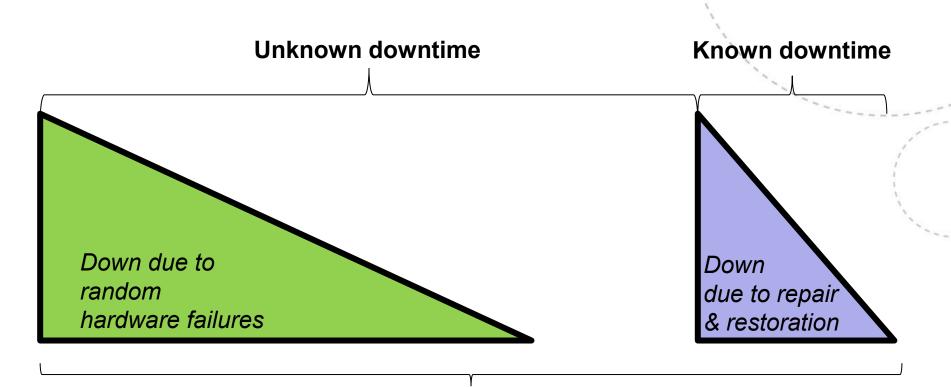


Ref: PDS method (2010)

Contributions to safety unavailability



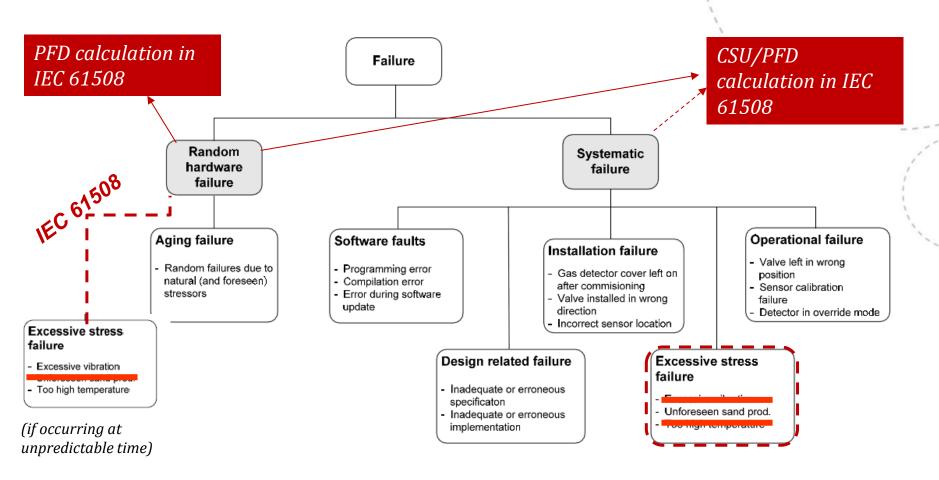
CSU versus PFD in IEC 61508 (simplified formulas)



PFD (IEC 61508)

Estimates of PFD using the PDS approach may therefore be different from estimates based on PFD in IEC 61508

Failure classification in PDS/ IEC 61508



Ref: PDS method (2013)

Best alternative? ISO TR 12489

ISO/TR 12489:2013(E)

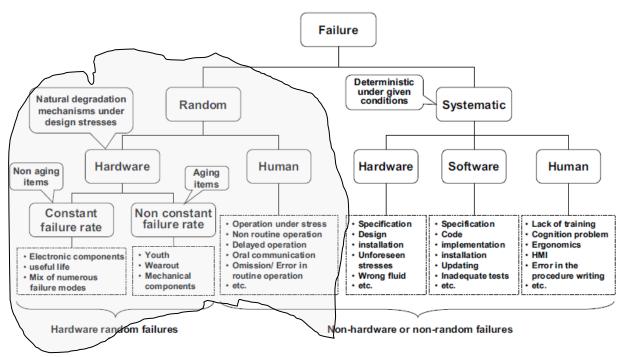
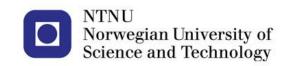


Figure B.5 — Random versus systematic failures

Failures being quantified

HIGH LEVEL VIEW ON CSU



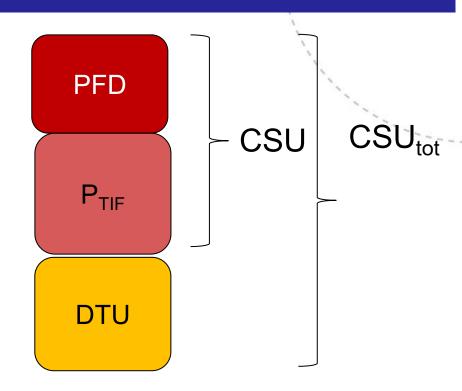
www.ntnu.no NTNU, September 2007

Quantification of safety unavailability

Unknown downtime due to DU failures

Unknown downtime due to failures that <u>cannot</u> be detected by a functional test, only a real demand

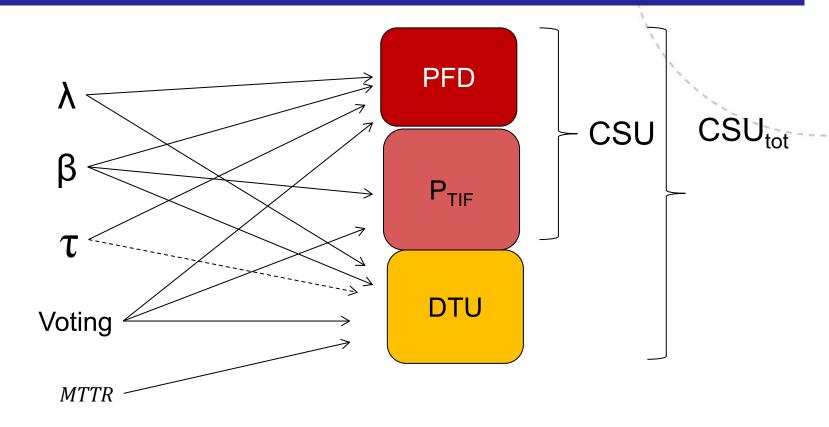
Known downtime, due to testing and repair of detected and undetected failures



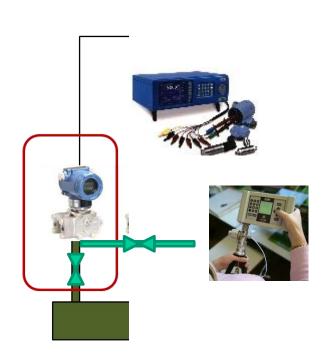
$$CSU = PFD + P_{TIF}$$

 $CSU_{tot} = PFD + P_{TIF} + DTU$

Quantification of safety unavailability



P_{TIF} – failures not revealed during a test

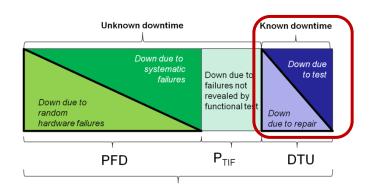


There are many "good" reasons for why a functional test is different from a real demand situation.

P_{TIF}: The Probability that the component/system will fail to carry out its intended function due to a (latent) failure not detectable by functional testing (therefore the name "test independent failure")

Often a systematic type of failure.

Downtime unavailability (DTU)

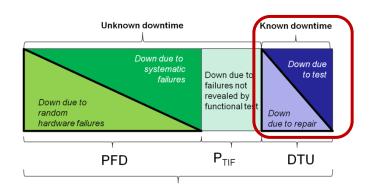


$$DTU = DTU_R + DTU_T$$

DTU_R: (Unplanned) Downtime unavailability due to repair of dangerous failures of rate λ_D , resulting in a period when it is known that the function is unavailable (i.e. category 3a above). The average duration of this period is the mean restoration time (MTTR); i.e. the time from the failure is detected until the safety function is restored;

DTU_T: Planned downtime (or inhibition time) resulting from activities such as testing and planned maintenance (i.e. category 3b above).

Downtime unavailability (DTU)

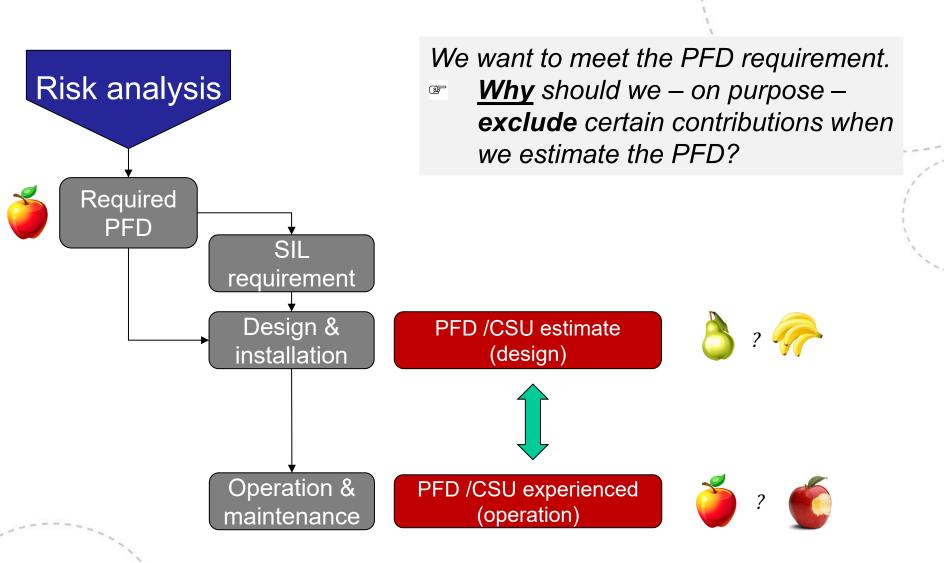


$$DTU = DTU_R + DTU_T$$

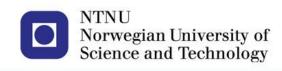
DTU_R: (Unplanned) Downtime unavailability due to repair of dangerous failures of rate λ_D , resulting in a period when it is known that the function is unavailable (i.e. category 3a above). The average duration of this period is the mean restoration time (MTTR); i.e. the time from the failure is detected until the safety function is restored;

DTU_T: Planned downtime (or inhibition time) resulting from activities such as testing and planned maintenance (i.e. category 3b above).

CSU/PFD as decision support



FORMULAS



www.ntnu.no NTNU, September 2007

Formulas for PFD (wrt DU failures)

Table 3 Summary of simplified formulas for PFD

	PFD calculation formulas		
Voting	Common cause contribution	Contribution from independent failures	
1001	-	$\lambda_{ m DU} \cdot au /2$	
1002	$\beta \cdot \lambda_{DU} \cdot \tau \: / 2$	$+ \qquad \qquad [\lambda_{DU} \cdot \tau]^2/3$	
2002	-	$2\cdot\lambda_{DU}\cdot\tau/2$	
1003	$C_{1003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	+ $[\lambda_{DU} \cdot \tau]^3/4$	
2003	$C_{2003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+$ $[\lambda_{DU} \cdot \tau]^2$	
3003	-	$3 \cdot \lambda_{DU} \cdot \tau / 2$	
100N; N = 2, 3,	$C_{100N} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+ \frac{1}{N+1} \cdot (\lambda_{\text{DU}} \cdot \tau)^{N}$	
MooN, M $<$ N; N = 2, 3,	C_{MooN} $\beta \cdot \lambda_{DU} \cdot \tau / 2$	$+ \frac{N!}{(N-M+2)!\cdot(M-1)!}\cdot(\lambda_{DU}\cdot\tau)^{N-M+1}$	
NooN; $N = 1, 2, 3,$	-	$N\cdot\lambda_{DU}\cdot\tau/2$	

Note: The (1-β-part) has been omitted.

New parameter. Correction factor for other voting than 1002. Will be explained later!

Formula for DTU_R

Starting point:

- Dangerous failures come as random events
- When a dangerous failure occur, it needs repair.
- While dangerous detected (DD) failures are repaired "immediately", DU failures are repaired when revealed.
- The critical situation if the SIS is unable to function while the repair is ongoing.

Strategy 1: The plant is always shutdown while repairing a failed component.

Result: No contribution to DTU_R.

Strategy 2: It is possible to operate the plant while the SIS is in a ``degraded mode''.

Result: Contributes to DTU_R

Strategy 3: The plant is always operated while the repair is ongoing, even if the SIS is unable to function.

Result: Contributes to DTU_R

Contribution to DTU when the SIS has a DU failure at the same time a repair is carried out

Table 6 Formulas for DTU_R for some voting logics and operational philosophies

Initial	Failure Type	Contribution to DTU_{R} for different operational/repair philosophies $^{1)}$	
voting logic		Degraded operation	Operation with no protection
1001	Single failure	N/A	λ_D ·MTTR
	Single failure	Degraded operation with 1001: $2 \cdot \lambda_{D} \cdot MTTR \cdot \lambda_{DU} \cdot \tau/2$	N/A
1002	Both components fail	N/A	$\beta{\cdot}\lambda_D{\cdot}MTTR$
2003	Single failure	Degraded operation with 2002 ²⁾ $3 \cdot \lambda_{D} \cdot MTTR \cdot 2 \cdot \lambda_{DU} \cdot \tau/2$	N/A
	Two components fail	Degraded operation with 1001: $(C_{2\infty3}C_{1003})\cdot\beta\cdot\lambda_D\cdot MTTR\cdot\lambda_{DU}\cdot\tau/2$	N/A
	All three components fail	N/A	$C_{loo3} \cdot \beta \cdot \lambda_D \cdot MTTR$

¹⁾ Note that the formulas provided here do not distinguish between the MTTR for one or two (three) components

²⁾ Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

- Give attention to note 2)
- Contribution to DTU
 when a repair is
 ongoing while there is
 a DU failure in either of
 the other two
 components.

Table 6 Formulas for DTU_R for some voting logics and operational philosophies

	acte of Terminal year Deck for some resing to great and operational princesophics		
Initial	Failure Type	Contribution to DTU _R for different operational/repair philosophies ¹⁾	
voting logic		Degraded operation	Operation with no protection
1001	Single failure	N/A	λ_D ·MTTR
1002	Single failure	Degraded operation with 1001: $2 \cdot \lambda_{D} \cdot MTTR \cdot \lambda_{DU} \cdot \tau/2$	N/A
	Both components fail	N/A	$\beta{\cdot}\lambda_{D}{\cdot}MTTR$
2003	Single failure	Degraded operation with 2002 ²⁾ $ > 3 \cdot \lambda_{D} \cdot MTTR \cdot 2 \cdot \lambda_{DU} \cdot \tau/2 $	N/A
	Two components fail	Degraded operation with 1001: $(C_{2\infty3}C_{1003})\cdot\beta\cdot\lambda_D\cdot MTTR\cdot\lambda_{DU}\cdot\tau/2$	N/A
	All three components fail	N/A	$C_{1003} \cdot \beta \cdot \lambda_D \cdot MTTR$

Note that the formulas provided here do not distinguish between the MTTR for one or two (three) components

Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

Contribution to DTU
 when exactly two DD
 failures are under
 repair (due to a CCF)
 and the third
 component has a DU
 failure.

Table 6 Formulas for DTU_R for some voting logics and operational philosophies

Initial Failure voting logic		Contribution to $\mathbf{DTU_R}$ for different operational/repair philosophies $^{(1)}$	
		philosop Degraded operation	Operation with no protection
1001	Single failure	N/A	λ_{D} ·MTTR
	Single failure	Degraded operation with 1001: $2 \cdot \lambda_{D} \cdot MTTR \cdot \lambda_{DU} \cdot \tau/2$	N/A
1002	Both components fail	N/A	$\beta{\cdot}\lambda_D{\cdot}MTTR$
2003	Single failure	Degraded operation with 2002 ²⁾ $3 \cdot \lambda_{D} \cdot MTTR \cdot 2 \cdot \lambda_{DU} \cdot \tau/2$	N/A
	Two components fail	Degraded operation with 1001: $(C_{2\infty3} - C_{1003}) \cdot \beta \cdot \lambda_D \cdot MTTR \cdot \lambda_{DU} \cdot \tau/2$	N/A
	All three components fail	N/A	$C_{1003} \cdot \beta \cdot \lambda_D \cdot MTTR$

¹⁾ Note that the formulas provided here do not distinguish between the MTTR for one or two (three) components

 C_{2003} : Correction factor when CCF involve the failure of two or three components (since two and three failures lead to system failure)

 C_{1003} : Correction factor when CCF involve the failure of three components (since three failures lead to system failure)

 C_{2003} - C_{1003} : The CCF involve exactly two failures

Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

Contribution to DTU
 when all components
 have failed due to a
 DD failure.

Table 6 Formulas for DTU_R for some voting logics and operational philosophies

Initial Failure		Contribution to $\mathrm{DTU}_{\mathrm{R}}$ for different operational/repair philosophies $^{1)}$	
voting T	Type	Degraded operation	Operation with no protection
1001	Single failure	N/A	λ_{D} ·MTTR
1002	Single failure	Degraded operation with 1001: $2 \cdot \lambda_{D} \cdot MTTR \cdot \lambda_{DU} \cdot \tau/2$	N/A
	Both components fail	N/A	$\beta \cdot \lambda_D \cdot MTTR$
2003	Single failure	Degraded operation with 2002 ²⁾ $3 \cdot \lambda_D \cdot MTTR \cdot 2 \cdot \lambda_{DU} \cdot \tau/2$	N/A
	Two components fail	Degraded operation with 1001: $(C_{2\infty3}C_{1003})\cdot\beta\cdot\lambda_D\cdot MTTR \lambda_{DU}\cdot\tau/2$	N/A
	All three components fail	N/A	$C_{1003} \cdot \beta \cdot \lambda_D \cdot MTTR$

¹⁾ Note that the formulas provided here do not distinguish between the MTTR for one or two (three) components

 C_{1003} : The CCF involve the failure of three components (since three failures lead to system failure)

Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

Starting point:

- The downtime due to test is deterministic! (Testing is not random events)
- In a test interval, the downtime is $\frac{t}{\tau}$
- The critical situation occurs if a test is performed with plant operating and the SIS becomes unable to function.

Strategy 1: The plant is always stopped while testing.

Result: **No** contribution to DTU_T.

Strategy 2: It is possible to operate the plant while a component is being tested (if the system can still operate in degraded mode).

Result: Contributes to DTU_T

Strategy 3: The plant is always operated during a test, even if the SIS is unable to function.

Result: Contributes to DTU_T

 Contribution to DTU only when all components are out for testing.

components are out for Table? Formulas for DTU_T for some voting logics and operational philosophies

Initial	Number of components tested	Contribution to DTU _T for different operational/testing philosophies	
voting logic	simultaneously	Degraded operation	Operation with no protection 1)
1001	One at a time	N/A	→ t/τ
	One at a time	tybn	N/A
1002	Both tested simultaneously	N/A	√ t/τ
2002	One at a time	Degradation to 2002 2) t · 2·\(\lambda_{DU}\)	N/A
2003	All three tested simultaneously	N/A	t/τ

¹⁾ Note that the formulas provided here do not distinguish between the testing time t for one component and simultaneous testing of two (or three) components. The total testing time without protection should therefore be used 2) Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

Contribution to DTU when either one of the components has a DU failure at the same time as the other component is tested.

- DTU_{T1}: When the failure (of the still untested component) occurs while testing
- DTU_{T2}: When a failure of the already tested component occurs while testing the other

Table 7 Formulas for DTU_T for some voting logics and operational philosophies

Initial Number of		Contribution to DTU _T for different operational/testing philosophies	
voting logic	components tested simultaneously	Degraded operation	Operation with no protection 1)
1001	One at a time	N/A	t/τ
	One at a time	$t \cdot \lambda_{DU}$	N/A
1002	Both tested simultaneously	N/A	t/T
2003	One at a time	Degradation to 2002 2) t · 2·\(\lambda_{DU}\)	N/A
2003	All three tested simultaneously	N/A	t/τ

Note that the formulas provided here do not distinguish between the testing time t for one component and simultaneous testing of two (or three) components. The total testing time without protection should therefore be used Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting

$$DTU_{\tau_1} = \frac{t}{\tau} (1 - e^{\lambda_{DU} \cdot (\tau + t)}) \approx \frac{t}{\tau} \lambda_{DU} \cdot (\tau + t) \approx \frac{t}{\tau} \lambda_{DU} \cdot \tau = \lambda_{DU} \cdot t$$

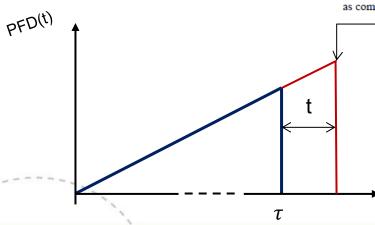
$$DTU_{T2} = \frac{t}{\tau} (1 - e^{-\frac{t}{2}\lambda_{DU}}) \approx 0 \quad (t/2 \text{ is very small also})$$

First give attention to note 2)

Contribution to DTU a component is being tested at the same time as the other (still untested) components have a DU failure.

Table 7 Formulas for DTU_T for some voting logics and operational philosophies Contribution to DTU_T for different operational/testing Number of Initial philosophies components tested voting Operation with no protection 1) simultaneously Degraded operation logic One at a time N/A t/τ 1001 One at a time N/A t-λ_{DU} Both tested 1002 N/A ıt/τ simultaneousl Degradation to 2002 One at a time N/A $t \cdot 2 \cdot \lambda_{DU}$ 2003 All three tested N/A t/τ simultaneously

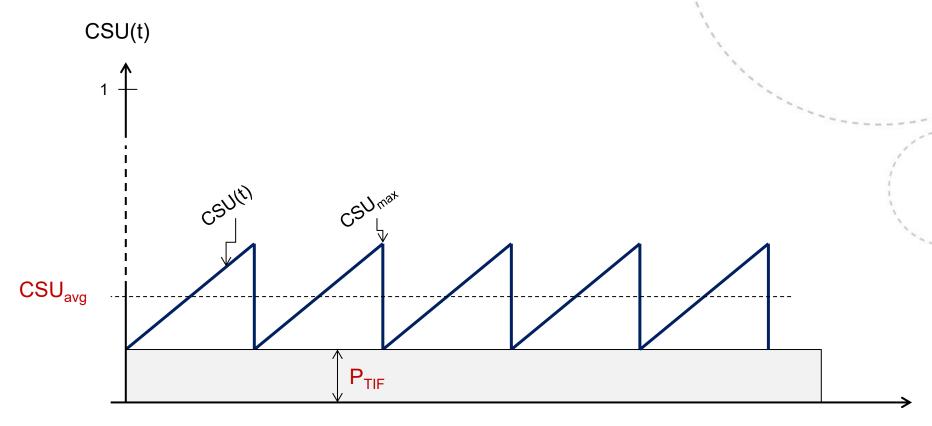
1) Note that the formulas provided here do not distinguish between the testing time t for one component and simultaneous testing of two (or three) components. The total testing time without protection should therefore be used 2) Degradation to a 1002 voting gives no contribution to the DTU, since a 1002 voting actually gives increased safety as compared to a 2003 voting



$$DTU_{\tau} = \frac{t}{\tau} \underbrace{2\lambda_{DU}(\tau + t)} \approx \frac{t}{\tau} \cdot 2\lambda_{DU}\tau = 2\lambda_{DU}t$$

(Simplified compared to previous slide)

P_TIF: Alternative 1. Fixed value



Test independent failures (P_{TIF})

Definition - interpretation:

- Probability that a component just being functionally tested, fails to perform on demand (irrespective of the interval of functional testing).
- Probability that the component/system will fail to carry out its intended function due to a (latent) failure <u>not detectable</u> by functional testing.
- Pragmatic, rather than theoretically funded measure
- The parameter P_{TIF} for a single component is usually set equal to $5 \cdot 10^{-4}$.
- The P_{TIF} of a subsystem is:

$$-P_{TIF}^{SYS} = f(P_{TIF}, \beta, \text{voting})$$

Table 5 Formulas for P_{TIF}, various voting logics

	n, rance reting regies
Voting	TIF contribution to CSU for MooN voting
1001	P_{TIF}
1002	$eta \cdot P_{ ext{TIF}}$
MooN, M <n< td=""><td>$C_{MooN} \cdot \beta \cdot P_{TIF}$</td></n<>	$C_{MooN} \cdot \beta \cdot P_{TIF}$
NooN, (N= 1, 2,)	$N \cdot P_{TIF}$

P_TIF: Alternative 2. As imperfect test

When incorporating the PTC the rate of dangerous undetected failures can be regarded as having two constituent parts:

- 1. Failures detected during proof testing: with rate PTC $\cdot \lambda_{DU}$ and proof test interval τ , and
- 2. Failures not detected during proof testing: with rate $(1 PTC) \cdot \lambda_{DU}$ and "test interval" T.

Here τ is the proof test interval and T is the assumed interval of complete testing. T may for example be the interval of a complete component overhaul when it is the assumed that the residual failure modes will be detected. If some failure modes are never tested for, then T should be taken as the lifetime of the equipment. For a 1001 voting the PFD is then given as:

$$\mathrm{PFD}_{\mathtt{loo1}} = \mathrm{PTC} \cdot \left(\lambda_{\mathtt{DU}} \cdot \frac{\tau}{2} \right) + \left(1 - \mathtt{PTC} \right) \cdot \left(\lambda_{\mathtt{DU}} \cdot \frac{T}{2} \right)$$

We see that the above expression becomes identical to the simplified formula given for PFD_{1001} in section 5.2.1 when the proof test coverage, $PTC = 1 \ (= 100 \ \%)$, i.e., when the functional test is perfect. This was also illustrated in Figure 5 where the average PFD (or CSU) is the same in all test intervals. However, if PTC < 1, the average PFD for a test interval will increase in subsequent test intervals, as illustrated in Figure 7.

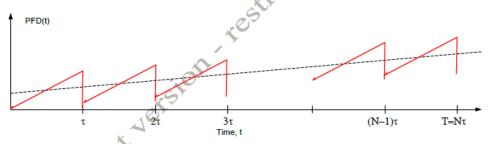
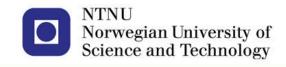


Figure 7: Time dependent PFD with PTC < 100 %

Remark: Note that PFD_{1001} gives average value for a given combination of τ and T, and not the curves indicated in figure 7!

C_{MOON}-FACTOR



Inclusion of CCFs

IEC 61508: All redundant components as the result of a CCF

CCF

Control room

Cyalve

Pressure transmitters

PDS method: From **two to** *n* components may fail as the result of a CCF. What failure combinations that contribute to the safety unavailability depends on how the components are voted

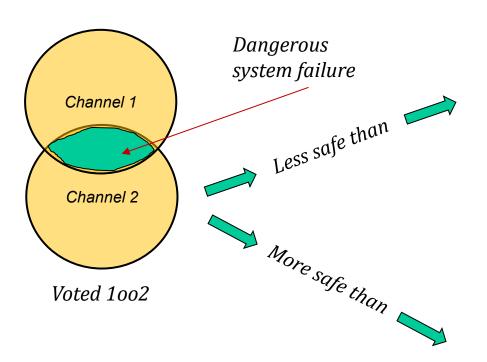
Inclusion of CCFs

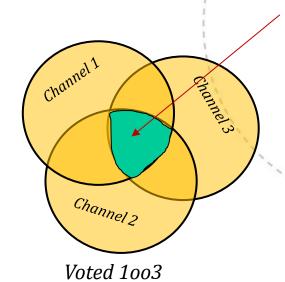
	1003	2003
IEC 61508	$PFD_{CCF} \approx \frac{\beta \lambda_{DU} \tau}{2}$	$PFD_{CCF} \approx \frac{\beta \lambda_{DU} \tau}{2}$
PDS	$PFD_{CCF} \approx \frac{C_{1003}\beta\lambda_{DU}\tau}{2}$	$PFD_{CCF} \approx \frac{C_{2003}\beta\lambda_{DU}\tau}{2}$

$$C_{1003} = 0.5$$
 $C_{2003} = 2.0$

→ According to IEC 61508, there is no benefit (in reducing the PFD) from using 1003 compared to 2003.

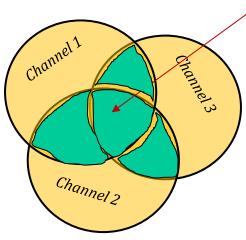
Starting point





Dangerous system failure

Dangerous



system failure

Voted 2003

Multiplicity of failures

Probability that *j* specific channels fail due to a CCF (in a system of n components):

$$g_{j,n} = \Pr \left(A_1 \cap A_2 \cap \ldots \cap A_j \cap A_{j+1}^* \cap \ldots \cap A_n^* \right)$$

Probability that exactly *j* out of *n* components fail (all combinations, assuming symmetry):

$$f_{j,n} = \binom{n}{j} g_{j,n}.$$

Probability that the system fail due to a CCF is when n-k+1 or more components are involved in CCF:

$$Q_{koon} = \Pr(At \ least \ n - k + 1 \ channels \ failed \ in \ CCF)$$

$$= \sum_{j=n-k+1}^{n} f_{j,n}. \tag{4}$$

Ref: Hokstad et al (2006)

Inclusion of CCFs - rationale

Probability that *j* specific channels fail due to a CCF (in a system of n components):

$$g_{j,n} = \Pr \left(A_1 \cap A_2 \cap \ldots \cap A_j \cap A_{j+1}^* \cap \ldots \cap A_n^* \right)$$

Probability that exactly *j* out of *n* components fail (all combinations, symmetry):

$$f_{j,n} = \binom{n}{j} g_{j,n}.$$

Probability that the system fail due to a CCF is when n-k+1 or more components are involved in CCF:

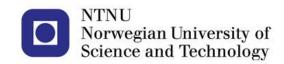
$$Q_{koon} = \Pr(At \ least \ n - k + 1 \ channels \ failed \ in \ CCF)$$

$$= \sum_{j=n-k+1}^{n} f_{j,n}.$$
Will eventually give
$$Q_{koon} = C_{koon} \cdot \beta \cdot Q$$

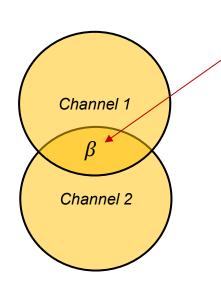
Ref: Hokstad et al (2006)

Need for new parameters

- β : Probability that a specific second channel fails, given that a channel has failed.
- β_2 : Probability that a third channel fails, given that two specific channels have failed
- β_k : Probability that a (k+1)th channel fails, given that k specific channels have failed
- Symmetry is assumed, so that all combinations of multiplicities of channel failures have same probability



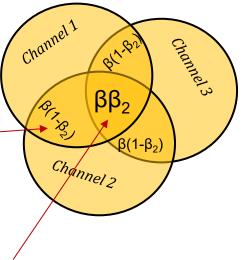
Two and three channel example



β: Probability two specific channels fail (channel 1 fails, when also channel 2 is failed, and visa verse)

 $\beta(1-\beta_2)$: Probability that two specific channels are involved in a CCF (Channel 1 and 2, but NOT channel 3)

 $\beta\beta_2$: Probability that three specific channels are failed.



Representing **total** probability that a channel fails

Three channel example: Details

Probability that three **specific** channels fail $(g_{3,3})$:

$$Pr(C1^* \cap C2^* \cap C3^*) = Pr(C1^* | C2^* \cap C3^*) \cdot Pr(C2^* \cap C3^*)$$

$$= Pr(C1^* | C2^* \cap C3^*) \cdot Pr(C2^* | C3^*) \cdot Pr(C3^*)$$

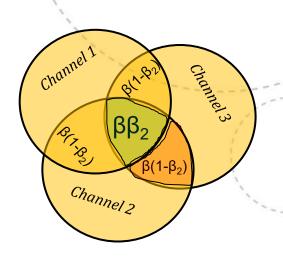
$$= \beta_2 \beta Q$$

Probability that two **specific** components fail $(g_{2,3})$:

$$Pr(C1 \cap C2^* \cap C3^*) = Pr(C1 \mid C2^* \cap C3^*) \cdot Pr(C2^* \cap C3^*)$$

$$= (1 - Pr(C1^* \mid C2^* \cap C3^*) \cdot Pr(C2^* \mid C3^*) \cdot Pr(C3^*)$$

$$= (1 - \beta_2)\beta Q$$



Ref: Hokstad et al (2006), Hokstad and Rausand (2008)

Inclusion of CCFs - rationale

Probability that one **specific** component has failed $(g_{1,3})$::

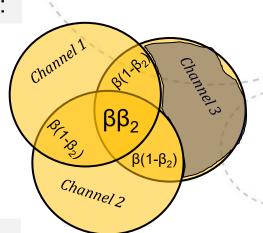
$$Pr(C1 \cap C2 \cap C3^{*}) = Pr(C1 \cap C2 \mid C3^{*}) \cdot Pr(C3^{*})$$

$$= \left[1 - Pr(C1^{*} \cup C2^{*} \mid C3^{*})\right] \cdot Pr(C3^{*})$$

$$= \left[1 - \left[Pr(C1^{*} \mid C3^{*}) + Pr(C2^{*} \mid C3^{*}) - Pr(C1^{*} \cap C2^{*} \cap C3^{*})\right]\right] \cdot Pr(C3^{*})$$

$$= \left[1 - (\beta(1 - \beta_{2}) + \beta(1 - \beta_{2}) - \beta\beta_{2})\right] \cdot Q$$

$$= \left[1 - (2 - \beta)\beta_{2}\right] \cdot Q$$

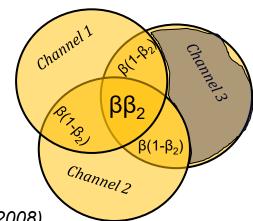


Probability that exactly 1,2, and 3 components fail out of n:

$$f_{1,3} = 3[1 - (2 - \beta_2)\beta]Q$$

$$f_{2,3} = 3(1 - \beta_2)\beta Q$$

$$f_{3,3} = \beta_2\beta Q$$



Ref: Hokstad et al (2006), Hokstad and Rausand (2008)

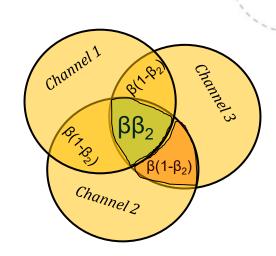
Inclusion of CCFs - rationale

Note that system has a CCF when (n-k+1) or more components fail:

$$Q_{2oo3} = Q_{2oo3} = f_{2,3} + f_{3,3} = (3 - 2\beta_2)\beta Q = C_{2oo3}\beta Q + 3 - C_{2oo3}\beta Q$$

$$Q_{1oo3} = f_{3,3} = \beta_2 \beta Q = C_{1oo3}\beta Q$$

$$Q_{I} = 1 - (2 - \beta_2)\beta Q$$



C_{MOON} - explanation

$$Q_{2003} = f_{2,3} + f_{3,3} = (3 - 2\beta_2)\beta Q = C_{2003}\beta Q$$

$$Q_{1003} = f_{3.3} = \beta_2 \beta Q = C_{1003} \beta Q$$

With $\beta_2 = 0.5$, we get:

$$C_{2003} = 2.0$$

$$C_{1003} = 0.5$$

Table B.2: Updated C_{MooN} factors for different voting logics

$M \setminus N$	N = 2	N = 3	N = 4	<i>N</i> = 5	<i>N</i> = 6
M=1	$C_{1002} = 1.0$	$C_{1003} = 0.5$	$C_{1004} = 0.3$	$C_{1005} = 0.2$	$C_{1006} = 0.15$
M=2	-	$C_{2003} = 2.0$	$C_{2004} = 1.1$	$C_{2005} = 0.8$	$C_{2006} = 0.6$
M=3	-	-	$C_{3004} = 2.8$	$C_{3005} = 1.6$	$C_{3006} = 1.2$
<i>M</i> = 4	-	-	-	$C_{4005} = 3.6$	$C_{4006} = 1.9$
<i>M</i> = 5	-	-	-	-	$C_{5006} = 4.5$

Ref: Hokstad et al (2006), Hokstad and Rausand (2008)

Generalized

Let C_{MooN}^* be the C_{MooN} factor calculated using generalized formula for C_{MooN} . Then the new C_{MooN} becomes:

$$C_{MooN} = q + (1 - q)C_{MooN}^*$$

The fraction q of the CCF can be described as "lethal shocks" (causing all N components to fail), and the fraction 1-q follow the logic of the previous CCF model of PDS.

The old C_{MooN}^* factor was rather complex. In the most recent version, due to some unfortunate effects of the old formula, the new proposal is:

$$C_{MooN}^* = \beta_2 \sum_{j=N-M+1}^{N} {N \choose j} \theta^{j-3} (1-\theta)^{N-j}; M = 1,2,...,N-2$$

This formula relies on some new important assumption: the β_k 's (for $k \ge 3$) are constant, i.e., $\beta_k = \theta$; $k \ge 3$. Provided $\theta \ge \beta_2$, it can be proved that we then get acceptable (non-negative) C_{MooN}^* values.

 $\theta \ge \beta_2$ means that the probability of having a **forth** failure, if three have already failed **is greater** than having a **third** failure in a n channel system, that the probability of having a fifth failure, if the four have already failed than having a forth failure in case three components have failed in a n channel system etc – which is reasonable.

Current values of C_{MooN} table assumes q=0.05, $\beta_2=0.5$ and $\theta=0.6$

Verify?

Table B.2: Updated C_{MooN} factors for different voting logics

$M \setminus N$	N = 2	N = 3	N = 4	<i>N</i> = 5	N=6
M=1	$C_{1002} = 1.0$	$C_{1003} = 0.5$	$C_{1004} = 0.3$	$C_{1005} = 0.2$	$C_{1006} = 0.15$
M=2	-	$C_{2003} = 2.0$	$C_{2004} = 1.1$	$C_{2005} = 0.8$	$C_{2006} = 0.6$
M=3	-	-	$C_{3004} = 2.8$	$C_{3005} = 1.6$	$C_{3006} = 1.2$
M=4	-	-	-	$C_{4005} = 3.6$	$C_{4006} = 1.9$
M=5	-	-	-	-	$C_{5006} = 4.5$

$$C_{MooN}^* = \beta_2 \sum_{j=N-M+1}^{N} {N \choose j} \theta^{j-3} (1-\theta)^{N-j}; M = 1,2,...,N-2$$

Current values of C_{MooN} table assumes q=0.05, β_2 = 0.5 and θ =0.6

Some remarks

Table 3 Summary of simplified formulas for PFD

	PFD calculation formulas					
Voting	Common cause contribution	Contribution from independent failures				
1001	-	$\lambda_{ m DU} \cdot au / 2$				
1002	$\beta \cdot \lambda_{DU} \cdot \tau \: / 2$	$+ \qquad \qquad [\lambda_{DU} \cdot \tau]^2/3$				
2002	-	$2 \cdot \lambda_{DU} \cdot \tau / 2$				
1003	$C_{1\text{oo}3} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+ \qquad \qquad [\lambda_{DU} \cdot \tau \]^3/4$				
2003	$\mathrm{C}_{2003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+$ $[\lambda_{DU} \cdot \tau]^2$				
3003	-	$3 \cdot \lambda_{DU} \cdot \tau / 2$				
100N; N = 2, 3,	$C_{100N} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+ \frac{1}{N+1} \cdot (\lambda_{\text{DU}} \cdot \tau)^{N}$				
MooN, M <n; n="2,<br">3,</n;>	$C_{MooN} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$	$+ \frac{N!}{(N-M+2)!\cdot (M-1)!}\cdot (\lambda_{DU}\cdot \tau)^{N-M+}$				
NooN; N = 1, 2, 3,	-	$N \cdot \lambda_{DU} \cdot \tau / 2$				

Note that the independent failure rate is not corrected for CCFs

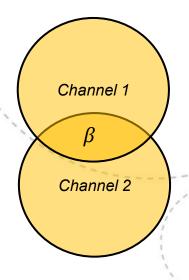
If independent failures were detailed

Voting	Formula for PFD
1001	$\lambda_{DU} \cdot \tau / 2$
1002	$\beta \cdot \lambda_{DU} \cdot \tau / 2$ + $[(1-\beta) \cdot \lambda_{DU} \cdot \tau]^2 / 3$
2002	$(2 - \beta) \cdot \lambda_{DU} \cdot \tau / 2$
1003	$C_{1003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2 + [(1-1.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau]^3 / 4$
2003	$C_{2003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$ $+ [(1-1.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau]^{2}$
3003	$(3 - 2.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau / 2$

$$Q_I = (1 - (2 - \beta_2)\beta Q)$$
With $\beta_2 = 0.5$, we get:
$$Q_I = (1 - 1.5\beta)Q$$

Formulas for CCFs

Voting	Formula for PFD
1001	$\lambda_{DU} \cdot \tau / 2$
1002	$\beta \cdot \lambda_{DU} \cdot \tau / 2$
	+ $[(1-\beta)\cdot\lambda_{DU}\cdot\tau]^2/3$
2002	$(2-\beta)$ $\lambda_{DU} \cdot \tau / 2$
1003	$C_{1003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$
	+ $[(1-1.5\cdot\beta)\cdot\lambda_{DU}\cdot\tau]^3/4$
2003	$C_{2003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$
	$+\left[(1\text{-}1.5\cdot\beta)\cdot\lambda_{DU}\cdot\tau\right]^{2}$
3003	$(3 - 2.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau / 2$



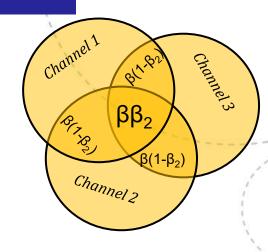
Total failure rate:

$$[2(1-\beta)+\beta] \lambda$$
$$=[2-\beta] \lambda$$

Remark: Somewhat odd to extract CCFs here since NooN. More reasonable to use $2\lambda_{DU}\tau/2$

Formulas for CCFs

Voting	Formula for PFD
1001	$\lambda_{DU} \cdot \tau / 2$
1002	$\beta \cdot \lambda_{DU} \cdot \tau / 2$ + $[(1-\beta) \cdot \lambda_{DU} \cdot \tau]^2 / 3$
2002	$(2 - \beta) \cdot \lambda_{DU} \cdot \tau / 2$
1003	$C_{1003} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$ $+ \left[(1-1.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau \right]^{3} / 4$
2003	$C_{2oo3} \cdot \beta \cdot \lambda_{DU} \cdot \tau / 2$ $+ [(1-1.5 \cdot \beta) \cdot \lambda_{DU} \cdot \tau]^{2}$
3003	$(3-2.5\cdot\beta)$ $\lambda_{DU} \cdot \tau/2$



Total failure rate:

$$3([1 - (2 - \beta_2)\beta] + 3(1 - \beta_2)\beta + \beta_2\beta)\lambda$$

$$= [3 - (3 - \beta_2)\beta] \lambda$$

$$= (3-2.5\beta) \lambda$$

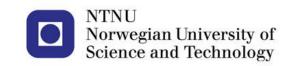
(Still odd to extract CCFs here for NooN)

Formulas for CCFs - important to note!

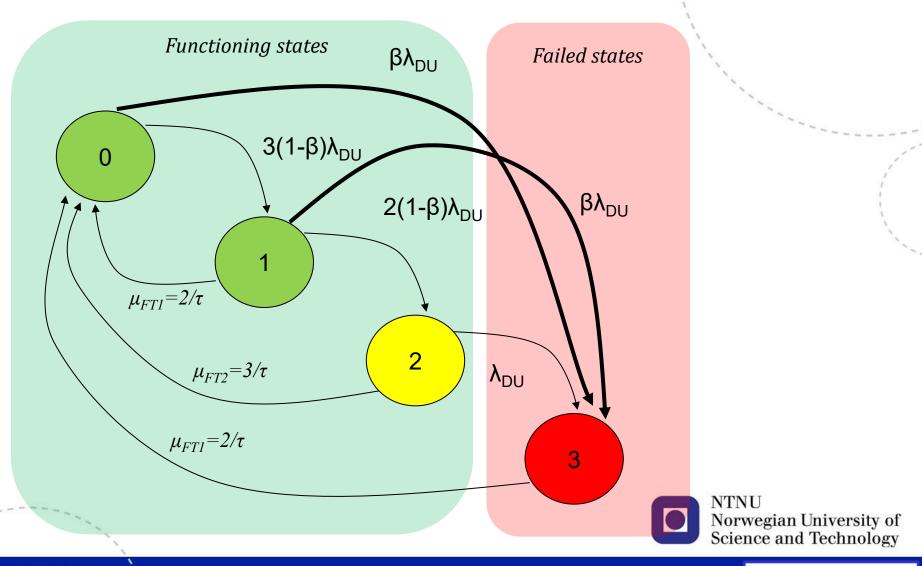
Note that β in the PDS method is only related to the *probability of having a second failure of a structure of redundant components, given that a failure has occurred*.

In the standard beta-factor model, β is the *probability that* <u>all</u> redundant components fail, given that a failure has occurred.

PDS METHOD WITH MARKOV



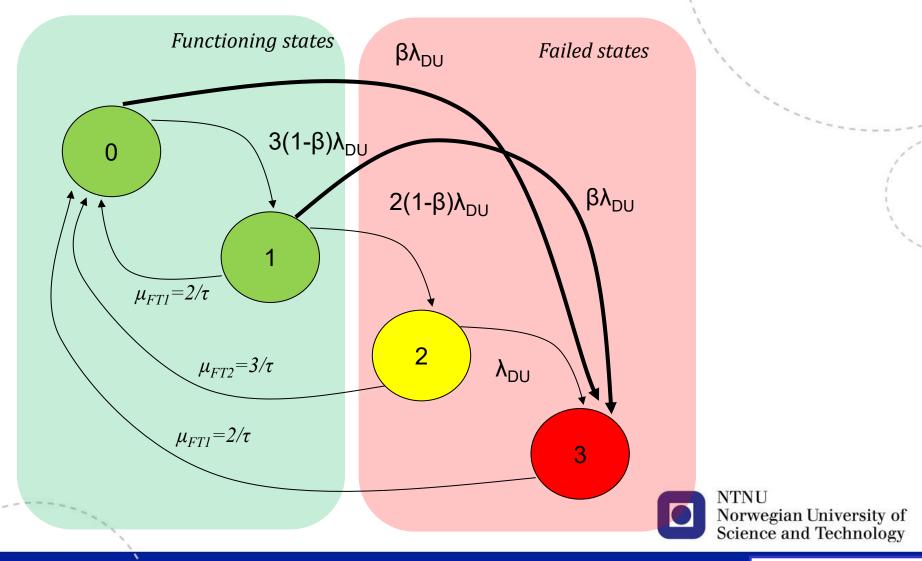
Standard beta factor model: 1003 system



www.ntnu.no

RAMS

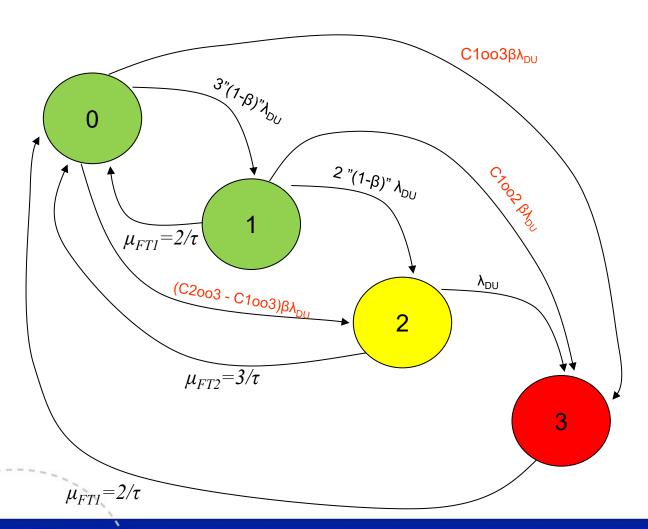
Standard beta factor model: 2003 system



www.ntnu.no

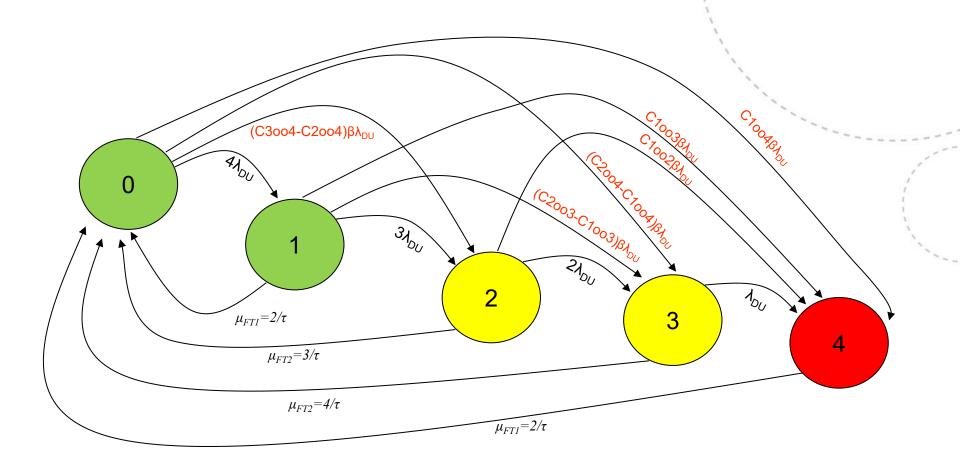
RAMS

PDS method: xoo3 system

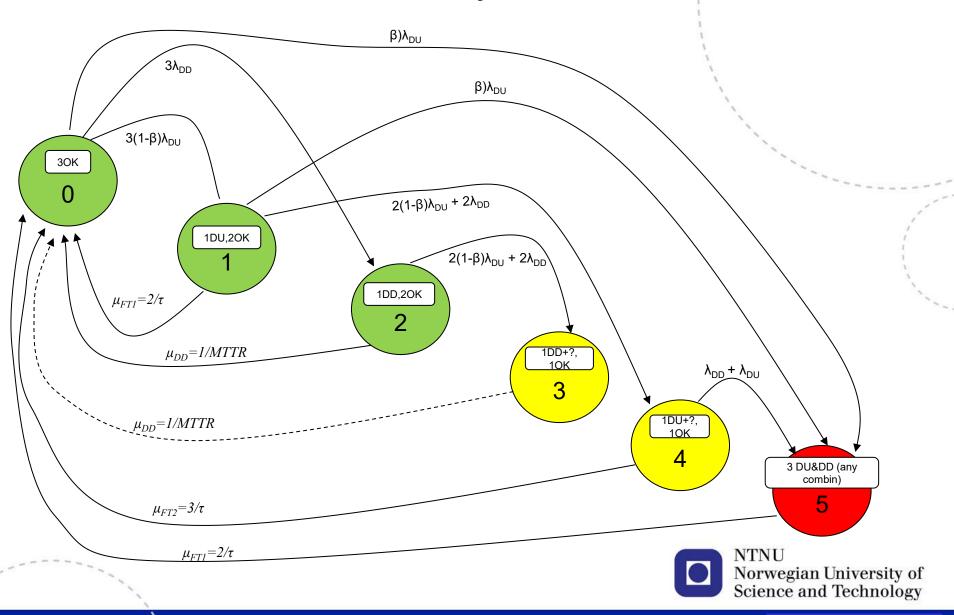


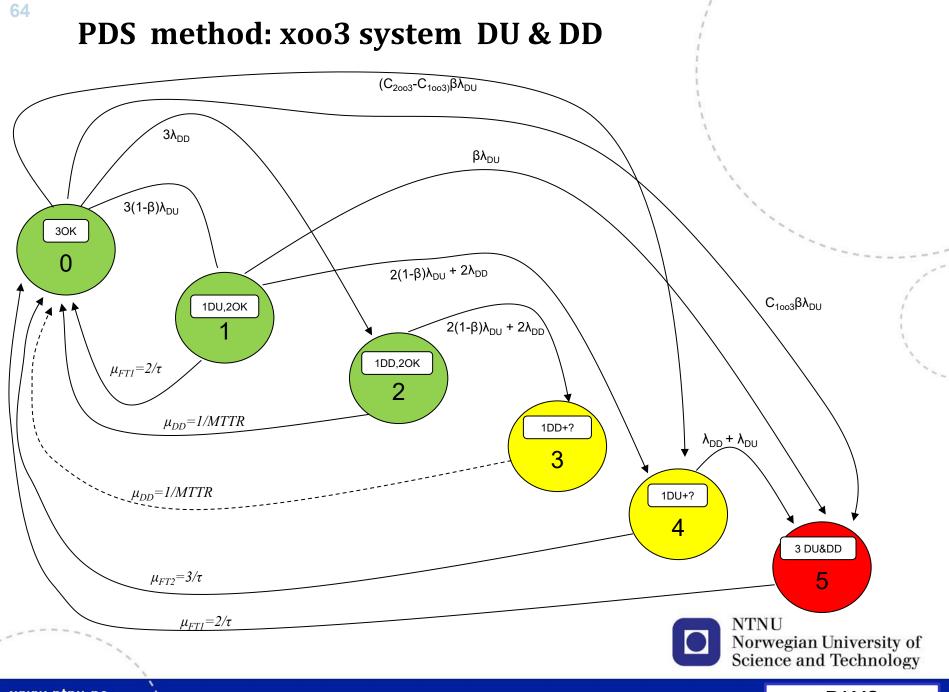
Remark: PDS method often skips "(1-β)»

PDS method: xoo4 system



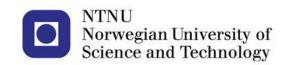
Standard beta factor: xoo3 system DU & DD





www.ntnu.no \ RAMS

DIAGNOSTIC COVERAGE AND SAFE FAILURE FRACTION



(Diagnostic) coverage (C_D)

In the PDS method, "diagnostic coverage" $c_{\rm d}$ denotes the diagnostic coverage, while DC is used in IEC 61508.

Fraction of dangerous failures detected by automatic self tests.

$$c_d = \frac{\lambda_{DD}}{\lambda}$$
 OR

Probability that a dangerous failure is detected by self test, given that a failure has occurred.

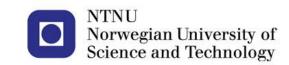
Safe failure fraction (SFF)

PDS used to have a different definition of SFF than IEC 61508. Non-critical failures were excluded.

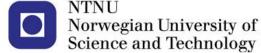
$$SFF = \frac{\uparrow \lambda_{DD} + \lambda_{S} \downarrow}{\lambda_{crit} \downarrow} = 1 - \frac{\lambda_{DU}}{\lambda_{crit}}$$

The new 2010 edition of IEC 61508 is now more in line with the PDS definition, as they now also recommend to exclude no-part /no-effect failures.

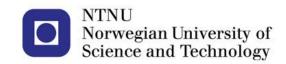
SUMMING UP – QUANTIFICATION OF SAFETY UNAVAILABILITY







QUANTIFICATION OF SPURIOUS TRIP RATE



Spurious trip rate

Table 8 Formulas for STR 1)

Voting	STR
1001	λ _{SU}
1002	$2 \cdot \lambda_{SU}$
2002	$\beta \cdot \lambda_{SU}$
1003	3 ⋅ λ _{SU}
2003	$C_{2003} \cdot \beta \cdot \lambda_{SU}$
3003	$C_{1003} \cdot \beta \cdot \lambda_{SU}$
100N; $N = 1, 2, 3,$	$N \cdot \lambda_{SU}$
MooN; $2 \le M \le N$; $N = 2, 3,$	$C_{(N\text{-}M+1)ooN} \cdot \beta \cdot \lambda_{SU}$

A spurious trip occurs if any of the components send a spurious signal

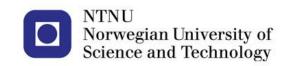
A spurious trip occurs only if (N-M+1)=2 components send a spurious signal

A spurious trip occurs only if <u>all</u> components send a spurious signal

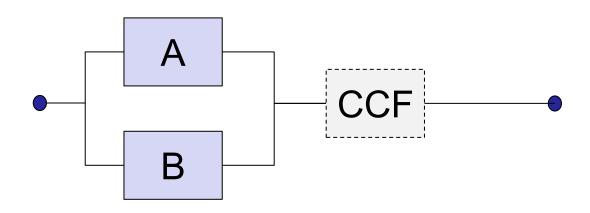
These formulas account for CCF only, (except for 100N configurations). Note that shutdowns can also be initiated as a result of dangerous failures, ref. discussion in section 5.3.4.

SPESIAL TOPICS: INCLUSION OF CCFS IN «SPECIAL CASES»

Not updated per 13.7.16. Revise according to appendix D in 2013 version.



Special case 1: CCFs if non-identical components

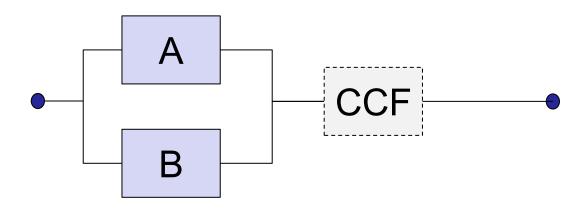


PFD due to independent failures:

$$PFD_{1002}^{Ind} = \frac{1}{\tau} \int_{0}^{\tau} [(1 - e^{(1-\beta)\lambda_{DU,A} \cdot t})(1 - e^{(1-\beta)\lambda_{DU,A} \cdot t})dt \approx \frac{1}{\tau} \int_{0}^{\tau} (1 - \beta)\lambda_{DU,A} \cdot t \cdot (1 - \beta)\lambda_{DU,B} \cdot t]dt$$
$$= \frac{1}{\tau} \frac{(1 - \beta)^{2} \lambda_{DU,A} \cdot \lambda_{DU,B} \cdot \tau^{3}}{3} = \frac{(1 - \beta)^{2} \lambda_{DU,A} \cdot \lambda_{DU,B} \cdot \tau^{2}}{3}$$

But what is β , and what failure rate and test interval should we use for the CCFs?:

Special case 1: CCFs if non-identical components



Regarding failure rate: Geometric mean is suggested:

$$\overline{\lambda}_{\mathrm{DU,AB}} = \sqrt{\lambda_{\mathrm{DU,A}} \cdot \lambda_{\mathrm{DU,B}}}$$

Regarding functional test interval: <u>If</u> different, use arithmetic mean:

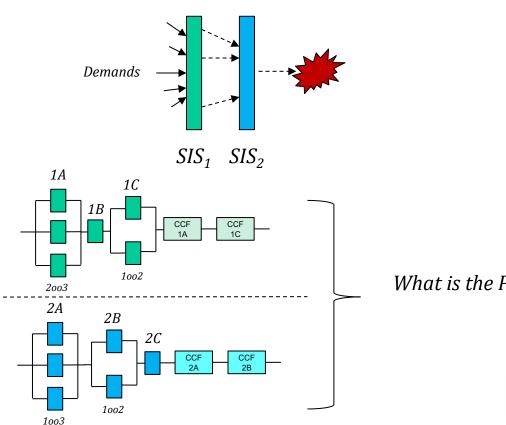
$$\overline{\tau} = \frac{\tau_A + \tau_B}{2}$$

Regarding β , it must be judged from case to case, but:

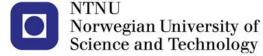
$$\beta_{AB} \leq \min(\beta_A, \beta_B)$$

Special case 2: Multiple SISs

What do we mean by multiple SISs?



What is the PFD?

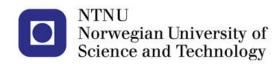


Special case 2: Multiple SISs

PDS proposes 6 different approaches to how

Table D.1: Possible approaches to determining the appropriate CF for a multiple SIS

_									_
		Approach	SIS element structure	Element PFD contribution	Conservative or realistic	Approximate or accurate	Calcu- lation effort	Dominant single elements	
	1	"Global"	Unknown/ disregarded	Unknown/ disregarded	Realistic	Approximate	Low	Yes	
	2	"Maxımal order"	Known	Unknown/ disregarded	Conservative	Approximate	Low	No	
	3	"Minimal order"	Known	Unknown/ disregarded	Realistic	Approximate	Low	Yes	
	4	"Dominant element"	Known	Known	Realistic	Approximate	Low	No	
	5	"Structural average"	Known	Known	Conservative Realistic	Accurate	Medium	No	
	6	"Cut set"	Known	Known	Conservative Realistic	Accurate	High	No	



Maximal order

Steps:

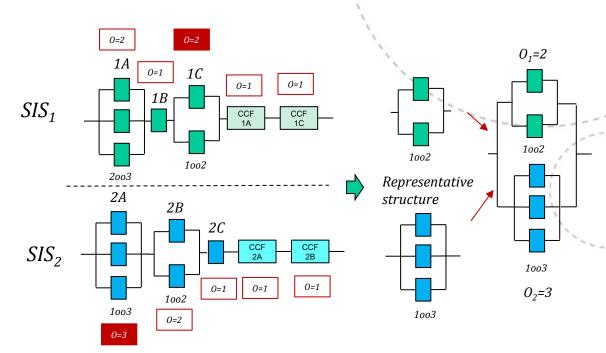
- 1. Identify the order "o" of each subsystem (n-m+1)
- 2. Select simplest structure with **highest** order for each SIS: O_k , where k is SIS $_k$
- 3. Calculate correction factor (CF) by:

$$CF = \frac{\prod_{k=1}^{N} (O_k + 1)}{1 + \sum_{k=1}^{N} O_k}$$

Note: N is here number of SISs. Somewhat unfortunate notation, but I use same as in the PDS method book.

4. Multiply the total PFD as:

$$PFD_{tot} = CF \cdot \prod_{k=1}^{N} PFD_{k}$$



Example above:

$$CF = \frac{(2+1)\cdot(3+1)}{1+(2)+(3)} = \frac{12}{6} = 2$$

Minimal order

Steps:

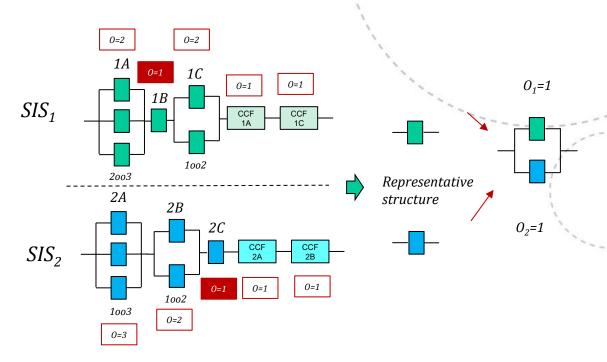
- 1. Identify the order "o" of each subsystem (n-m+1)
- 2. Select simplest structure with **lowest** order for each SIS: O_k , where k is SIS $_k$
- 3. Calculate correction factor (CF) by:

$$CF = \frac{\prod_{k=1}^{N} (O_k + 1)}{1 + \sum_{k=1}^{N} O_k}$$

Note: N is here number of SISs. Somewhat unfortunate notation, but I use same as in the PDS method book.

4. Multiply the total PFD as:

$$PFD_{tot} = CF \cdot \prod_{k=1}^{N} PFD_{k}$$



Example above:

$$CF = \frac{(1+1)\cdot(1+1)}{1+(1)+(1)} = \frac{4}{3}$$

Structural average

Steps:

- 1. Do the following per subsystem (for each SIS):
 - a) Calculate the PFD
 - b) Determine the relative weight
 - c) Determine the representative structure
- 2. Determine the representative structure for each SIS
- 3. Calculate the CF (using formula already introduced)
- Calculate total PFD with CF (as already shown)

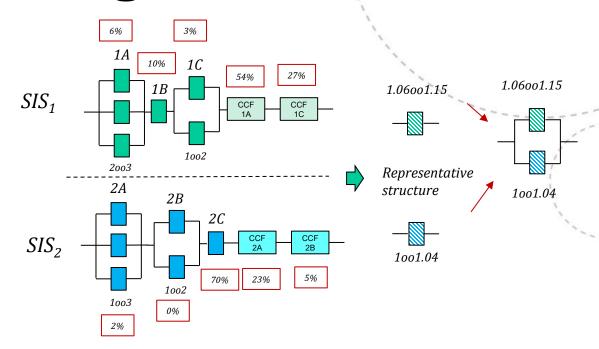


Table D.4: Calculation for finding the representative m-oo-n structure for SIS₁

Example: (SIS_1)

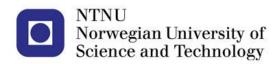
Element	Structure			DED [0/]	Weighted structure		
Liement	m-00-n	m	n	PFD [%]	m	n	
1A	2003	2	3	6	0.12	0.18	
1B	1001	1	1	10	0.1	0.1	
1C	1002	1	2	3	0.03	0.06	
CCF 1A	1001	1	1	54	0.54	0.54	
CCF 1C	1001	1	1	27	0.27	0.27	
Total			100	1.06	1.15		

$$O_1 = 1.15 - 1.06 + 1 = 1.09$$

 $O_1 = 1.0 - 1.04 + 1 = 0.96$
 $CF = \frac{(1+1.09) \cdot (1+0.96)}{1+(1.09)+(1.96)} = 1.34$

Discussion

- Maximal order: Assumes that the sub-structure with the highest redundancy is the most important contributor. Not so realistic, unless <u>very</u> reliable single elements...
- Minimal order: Assumes that the sub-structure with the lowest redundancy is the most important contributor.
 Perhaps more realistic.
- Structural average: Not so intuitive. Advantage is that the sub-structure with the highest weight will influence the most on the representative structure



Keywords (revisited)

 $\begin{array}{c} CSU \\ DTU_T \\ \\ Systematic \ failure \\ \\ C_{MooN} \end{array}$

 DTU_R

β

 β_2

Random hardware failure